Vis enkel innførsel

dc.contributor.authorBöhner, Hanna
dc.contributor.authorKleiven, Eivind Flittie
dc.contributor.authorIms, Rolf Anker
dc.contributor.authorSoininen, Eeva M
dc.date.accessioned2023-08-23T08:57:42Z
dc.date.available2023-08-23T08:57:42Z
dc.date.issued2023-06-05
dc.description.abstractCamera traps have become popular for monitoring biodiversity, but the huge amounts of image data that arise from camera trap monitoring represent a challenge and artificial intelligence is increasingly used to automatically classify large image data sets. However, it is still challenging to combine automatic classification with other steps and tools needed for efficient, quality-assured and adaptive processing of camera trap images in long-term monitoring programs. Here we propose a semi-automatic workflow to process images from small mammal cameras that combines all necessary steps from downloading camera trap images in the field to a quality checked data set ready to be used in ecological analyses. The workflow is implemented in R and includes (1) managing raw images, (2) automatic image classification, (3) quality check of automatic image labels, as well as the possibilities to (4) retrain the model with new images and to (5) manually review subsets of images to correct image labels. We illustrate the application of this workflow for the development of a new monitoring program of an Arctic small mammal community. We first trained a classification model for the specific small mammal community based on images from an initial set of camera traps. As the monitoring program evolved, the classification model was retrained with a small subset of images from new camera traps. This case study highlights the importance of model retraining in adaptive monitoring programs based on camera traps as this step in the workflow increases model performance and substantially decreases the total time needed for manually reviewing images and correcting image labels. We provide all R scripts to make the workflow accessible to other ecologists.en_US
dc.identifier.citationBöhner, Kleiven, Ims, Soininen. A semi-automatic workflow to process images from small mammal camera traps. Ecological Informatics. 2023;76en_US
dc.identifier.cristinIDFRIDAID 2167553
dc.identifier.doi10.1016/j.ecoinf.2023.102150
dc.identifier.issn1574-9541
dc.identifier.issn1878-0512
dc.identifier.urihttps://hdl.handle.net/10037/30207
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalEcological Informatics
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA semi-automatic workflow to process images from small mammal camera trapsen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)