dc.contributor.author | Jacquat, Raphaël P. B. | |
dc.contributor.author | Krainer, Georg | |
dc.contributor.author | Peter, Quentin A. E. | |
dc.contributor.author | Babar, Ali Nawaz | |
dc.contributor.author | Vanderpoorten, Oliver | |
dc.contributor.author | Xu, Catherine K. | |
dc.contributor.author | Welsh, Timothy J. | |
dc.contributor.author | Kaminski, Clemens F. | |
dc.contributor.author | Keyser, Ulrich F. | |
dc.contributor.author | Baumberg, Jeremy J. | |
dc.contributor.author | Knowles, Tuomas P. J. | |
dc.date.accessioned | 2023-08-28T08:56:05Z | |
dc.date.available | 2023-08-28T08:56:05Z | |
dc.date.issued | 2023-02-24 | |
dc.description.abstract | : An approach relying on nanocavity confinement is
developed in this paper for the sizing of nanoscale particles and single
biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within
nanofluidic cavities to determine their hydrodynamic radii. Using
theoretical modeling and simulations, we show that the residence
time of particles within nanocavities above a critical time scale
depends on the diffusion coefficient of the particle, which allows the
estimation of the particle’s size. We demonstrate this approach
experimentally through the measurement of particle residence times
within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the
sizes of nanoscale colloids, protein aggregates, and single DNA
oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of
nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics. | en_US |
dc.identifier.citation | Jacquat, Krainer, Peter, Babar, Vanderpoorten, Xu, Welsh, Kaminski, Keyser, Baumberg, Knowles. Single-Molecule Sizing through Nanocavity Confinement. Nano Letters. 2023 | en_US |
dc.identifier.cristinID | FRIDAID 2133924 | |
dc.identifier.doi | 10.1021/acs.nanolett.1c04830 | |
dc.identifier.issn | 1530-6984 | |
dc.identifier.issn | 1530-6992 | |
dc.identifier.uri | https://hdl.handle.net/10037/30472 | |
dc.language.iso | eng | en_US |
dc.publisher | ACS Publications | en_US |
dc.relation.journal | Nano Letters | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/766972/EU/TOWARDS NOVEL NANO-SCALE TECHNOLOGIES BASED ON PHORETIC FLOW EFFECTS/NANOPHLOW/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/841466/EU/A Single-Molecule Technology for Resolving Chaperone Action in Neurodegenerative Diseases/MicroSPARK/ | en_US |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/ 101064246/EU/Nanofluidics for label-free detection of exosomes and protein aggregates in neurodegenerative disease research/EXO-CHIP/ | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | en_US |
dc.title | Single-Molecule Sizing through Nanocavity Confinement | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |