Vis enkel innførsel

dc.contributor.authorJacquat, Raphaël P. B.
dc.contributor.authorKrainer, Georg
dc.contributor.authorPeter, Quentin A. E.
dc.contributor.authorBabar, Ali Nawaz
dc.contributor.authorVanderpoorten, Oliver
dc.contributor.authorXu, Catherine K.
dc.contributor.authorWelsh, Timothy J.
dc.contributor.authorKaminski, Clemens F.
dc.contributor.authorKeyser, Ulrich F.
dc.contributor.authorBaumberg, Jeremy J.
dc.contributor.authorKnowles, Tuomas P. J.
dc.date.accessioned2023-08-28T08:56:05Z
dc.date.available2023-08-28T08:56:05Z
dc.date.issued2023-02-24
dc.description.abstract: An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle’s size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.en_US
dc.identifier.citationJacquat, Krainer, Peter, Babar, Vanderpoorten, Xu, Welsh, Kaminski, Keyser, Baumberg, Knowles. Single-Molecule Sizing through Nanocavity Confinement. Nano Letters. 2023en_US
dc.identifier.cristinIDFRIDAID 2133924
dc.identifier.doi10.1021/acs.nanolett.1c04830
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://hdl.handle.net/10037/30472
dc.language.isoengen_US
dc.publisherACS Publicationsen_US
dc.relation.journalNano Letters
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/766972/EU/TOWARDS NOVEL NANO-SCALE TECHNOLOGIES BASED ON PHORETIC FLOW EFFECTS/NANOPHLOW/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/841466/EU/A Single-Molecule Technology for Resolving Chaperone Action in Neurodegenerative Diseases/MicroSPARK/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/ 101064246/EU/Nanofluidics for label-free detection of exosomes and protein aggregates in neurodegenerative disease research/EXO-CHIP/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleSingle-Molecule Sizing through Nanocavity Confinementen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)