ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning nanoscale motion patterns of vesicles in living cells

Permanent lenke
https://hdl.handle.net/10037/31263
DOI
https://doi.org/10.1109/CVPR42600.2020.01403
Thumbnail
Åpne
article.pdf (1.639Mb)
Akseptert manusversjon (PDF)
Dato
2020
Type
Chapter
Bokkapittel

Forfatter
Sekh, Arif Ahmed; Opstad, Ida Sundvor; Birgisdottir, Åsa Birna; Myrmel, Truls; Ahluwalia, Balpreet Singh; Agarwal, Krishna; Prasad, Dilip K.
Sammendrag
Detecting and analyzing nanoscale motion patterns of vesicles, smaller than the microscope resolution (~250 nm), inside living biological cells is a challenging problem. State-of-the-art CV approaches based on detection, tracking, optical flow or deep learning perform poorly for this problem. We propose an integrative approach, built upon physics based simulations, nanoscopy algorithms, and shallow residual attention network to make it possible for the first time to analysis sub-resolution motion patterns in vesicles that may also be of sub-resolution diameter. Our results show state-of-the-art performance, 89% validation accuracy on simulated dataset and 82% testing accuracy on an experimental dataset of living heart muscle cells imaged under three different pathological conditions. We demonstrate automated analysis of the motion states and changed in them for over 9000 vesicles. Such analysis will enable large scale biological studies of vesicle transport and interaction in living cells in the future.
Forlag
IEEE
Sitering
Sekh, Opstad, Birgisdottir, Myrmel, Ahluwalia, Agarwal, Prasad: Learning nanoscale motion patterns of vesicles in living cells. In: IEEE .. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2020, 2020. IEEE
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring