ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification

Permanent lenke
https://hdl.handle.net/10037/31355
DOI
https://doi.org/10.1007/978-3-030-69244-5_25
Thumbnail
Åpne
article.pdf (288.6Kb)
Akseptert manusversjon (PDF)
Dato
2021-02-21
Type
Chapter
Bokkapittel

Forfatter
Jha, Debesh; Yazidi, Anis; Riegler, Michael Alexander; Johansen, Dag; Johansen, Håvard D.; Halvorsen, Pål
Sammendrag
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks. A key drawback of DNNs is that the training phase can be very computationally expensive. Organizations or individuals that cannot afford purchasing state-of-the-art hardware or tapping into cloud hosted infrastructures may face a long waiting time before the training completes or might not be able to train a model at all. Investigating novel ways to reduce the training time could be a potential solution to alleviate this drawback, and thus enabling more rapid development of new algorithms and models. In this paper, we propose LightLayers, a method for reducing the number of trainable parameters in DNNs. The proposed LightLayers consists of LightDense and LightConv2D layers that are as efficient as regular Conv2D and Dense layers but uses less parameters. We resort to Matrix Factorization to reduce the complexity of the DNN models resulting in lightweight DNN models that require less computational power, without much loss in the accuracy. We have tested LightLayers on MNIST, Fashion MNIST, CIFAR 10, and CIFAR 100 datasets. Promising results are obtained for MNIST, Fashion MNIST, and CIFAR-10 datasets whereas CIFAR 100 shows acceptable performance by using fewer parameters.
Forlag
Springer Nature
Sitering
Jha, Yazidi, Riegler, Johansen, Johansen, Halvorsen: LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification. In: Zhang, Xu, Tian. Parallel and Distributed Computing, Applications and Technologies: 21st International Conference, PDCAT 2020, Shenzhen, China, December 28–30, 2020, Proceedings, 2021. Springer Nature
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring