ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
  •   Hjem
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping Marine Macroalgae along the Norwegian Coast Using Hyperspectral UAV Imaging and Convolutional Nets for Semantic Segmentation

Permanent lenke
https://hdl.handle.net/10037/31681
DOI
https://doi.org/10.1109/IGARSS52108.2023.10282809
Thumbnail
Åpne
article.pdf (10.21Mb)
Akseptert manusversjon (PDF)
Dato
2023-10-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Skjelvareid, Martin Hansen; Rinde, Eli; Hancke, Kasper; Blix, Katalin; Hoarau, Galice Guillaume
Sammendrag
Marine macroalgae form underwater "blue forests" with several important functions. Hyperspectral imaging from unmanned aerial vehicles provides a rich set of spectral and spatial data that can be used to map the distribution of such macroalgae. Results from a study using 81 annotated hyper-spectral images from the Norwegian coast are presented. A U-net convolutional network was used for classification, and accuracies for all macroalgae classes were above 90%, indicating the potential of the method as an accurate tool for blue forest monitoring.
Forlag
IEEE
Sitering
Skjelvareid, Rinde, Hancke, Blix, Hoarau. Mapping Marine Macroalgae along the Norwegian Coast Using Hyperspectral UAV Imaging and Convolutional Nets for Semantic Segmentation. IEEE International Geoscience and Remote Sensing Symposium proceedings. 2023
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring