Vis enkel innførsel

dc.contributor.authorBraakmann-Folgmann, Anne Christina
dc.contributor.authorShepherd, Andrew
dc.contributor.authorHogg, David
dc.contributor.authorRedmond, Ella
dc.date.accessioned2024-01-19T15:34:27Z
dc.date.available2024-01-19T15:34:27Z
dc.date.issued2023-11-09
dc.description.abstractIcebergs release cold, fresh meltwater and terrigenous nutrients as they drift and melt, influencing the local ocean properties, encouraging sea ice formation and biological production. To locate and quantify the fresh water flux from Antarctic icebergs, changes in their area and thickness have to be monitored along their trajectories. While the locations of large icebergs are operationally tracked by manual inspection, delineation of their extent is not. Here, we propose a U-net approach to automatically map the extent of giant icebergs in Sentinel-1 imagery. This greatly improves the efficiency compared to manual delineations, reducing the time for each outline from several minutes to less than 0.01 s. We evaluate the performance of our U-net and two state-of-the-art segmentation algorithms (Otsu and k-means) on 191 images. For icebergs larger than those covered by the training data, we find that U-net tends to miss parts. Otherwise, U-net is more robust in scenes with complex backgrounds – ignoring sea ice, smaller regions of nearby coast or other icebergs – and outperforms the other two techniques by achieving an F1 score of 0.84 and an absolute median deviation in iceberg area of 4.1 %.en_US
dc.identifier.citationBraakmann-Folgmann, Shepherd, Hogg, Redmond. Mapping the extent of giant Antarctic icebergs with deep learning. The Cryosphere. 2023;17(11):4675-4690en_US
dc.identifier.cristinIDFRIDAID 2215855
dc.identifier.doi10.5194/tc-17-4675-2023
dc.identifier.issn1994-0416
dc.identifier.issn1994-0424
dc.identifier.urihttps://hdl.handle.net/10037/32655
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.relation.journalThe Cryosphere
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleMapping the extent of giant Antarctic icebergs with deep learningen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)