ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wavelet neural networks versus wavelet-based naural networks

Permanent link
https://hdl.handle.net/10037/32699
DOI
https://doi.org/10.12732/ijam.v36i2.5
Thumbnail
View/Open
article.pdf (3.312Mb)
Accepted manuscript version (PDF)
Date
2023
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dechevski / Dechevsky, Lubomir Todorov; Tangrand, Kristoffer Meyer
Abstract
This is the first paper in a sequence of studies including also [#!llhm2022!#] and [#!llhm2022_1!#] in which we introduce a new type of neural networks (NNs) – wavelet-based neural networks (WBNNs) – and study their properties and potential for applications. We begin this study with a comparison to the currently existing type of wavelet neural networks (WNNs) and show that WBNNs vastly outperform WNNs. One reason for the vast superiority of WBNNs is their advanced hierarchical tree structure based on biorthonormal multiresolution analysis (MRA). Another reason for this is the implementation of our new idea to incorporate the wavelet tree depth into the neural width of the NN. The separation of the roles of wavelet depth and neural depth provides a conceptually and algorithmically simple but very highly efficient methodology for sharp increase in functionality of swarm and deep WBNNs and rapid acceleration of the machine learning process.
Publisher
IJAM (International Journal of Applied Mathematics)
Citation
Dechevski / Dechevsky, Tangrand. Wavelet neural networks versus wavelet-based neural networks. International Journal of Applied Mathematics (IJAM). 2023;36(2):205-251
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2023 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)