dc.contributor.author | Chen, Hao | |
dc.contributor.author | Birkelund, Yngve | |
dc.contributor.author | Ricaud, Benjamin | |
dc.contributor.author | Zhang, Qixia | |
dc.date.accessioned | 2024-02-01T08:58:22Z | |
dc.date.available | 2024-02-01T08:58:22Z | |
dc.date.issued | 2023 | |
dc.description.abstract | As renewable energy sources offshore wind energy develop quickly, countries like Norway with long coastlines are exploring their potential. However, the diverse wind resources across different regions of Norway present challenges for study for effective utilization of offshore wind energy. This study proposes a novel method that utilizes transfer learning techniques to analyse the resource differences between these areas for optimum energy generation. The suggested approach is tested using real-world wind data from Norway’s southern, middle, and northern regions. The results show that transfer learning successfully bridges resource discrimination, boosting wind resource prediction precision in the target domains. The work can contribute to optimizing offshore wind energy utilization in Norway by addressing the resource disparities and forecasting between the different regions. | en_US |
dc.identifier.citation | Chen, Birkelund, Ricaud, Zhang. A southern, middle, and northern Norwegian offshore wind energy resources analysis by a transfer learning method for Energy Internet. Journal of Physics: Conference Series (JPCS). 2023;2655(1) | en_US |
dc.identifier.cristinID | FRIDAID 2231666 | |
dc.identifier.doi | 10.1088/1742-6596/2655/1/012011 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.uri | https://hdl.handle.net/10037/32802 | |
dc.language.iso | eng | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.journal | Journal of Physics: Conference Series (JPCS) | |
dc.relation.projectID | Equinor: Akademiaavtale Equinor UiT Norges arktiske universitet | en_US |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2023 The Author(s) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0 | en_US |
dc.rights | Attribution 3.0 International (CC BY 3.0) | en_US |
dc.subject | VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Datateknologi: 551 | en_US |
dc.subject | VDP::Technology: 500::Information and communication technology: 550::Computer technology: 551 | en_US |
dc.subject | VDP::Teknologi: 500::Elektrotekniske fag: 540 | en_US |
dc.subject | VDP::Technology: 500::Electro-technical sciences: 540 | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Geofag: 450::Meteorologi: 453 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Geosciences: 450::Meteorology: 453 | en_US |
dc.subject | VDP::Matematikk og naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en_US |
dc.subject | VDP::Mathematics and natural scienses: 400::Mathematics: 410::Statistics: 412 | en_US |
dc.subject | Maskinlæring / Machine learning | en_US |
dc.subject | Meteorologi / Meteorology | en_US |
dc.subject | Offshore Wind / Offshore vind | en_US |
dc.subject | Vindenergi / Wind energy | en_US |
dc.title | A southern, middle, and northern Norwegian offshore wind energy resources analysis by a transfer learning method for Energy Internet | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |
dc.type | Peer reviewed | en_US |