ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-shot Learning with Hyperspherical Embeddings

Permanent link
https://hdl.handle.net/10037/32935
DOI
https://doi.org/10.1109/CVPR52729.2023.00727
Thumbnail
View/Open
article.pdf (1.241Mb)
Accepted manuscript version (PDF)
Date
2023-08-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Trosten, Daniel Johansen; Chakraborty, Rwiddhi; Løkse, Sigurd Eivindson; Wickstrøm, Kristoffer; Jenssen, Robert; Kampffmeyer, Michael
Abstract
Distance-based classification is frequently used in transductive few-shot learning (FSL). However, due to the high-dimensionality of image representations, FSL classifiers are prone to suffer from the hubness problem, where a few points (hubs) occur frequently in multiple nearest neighbour lists of other points. Hubness negatively impacts distance-based classification when hubs from one class appear often among the nearest neighbors of points from another class, degrading the classifier's performance. To address the hubness problem in FSL, we first prove that hubness can be eliminated by distributing representations uniformly on the hypersphere. We then propose two new approaches to embed representations on the hypersphere, which we prove optimize a tradeoff between uniformity and local similarity preservation - reducing hubness while retaining class structure. Our experiments show that the proposed methods reduce hubness, and significantly improves transductive FSL accuracy for a wide range of classifiers 11Code available at https://github.com/uitml/noHub..
Is part of
Chakraborty, R. (2024). Model and Data Diagnosis under Limited Supervision in Modern AI. (Doctoral thesis). https://hdl.handle.net/10037/35867.
Publisher
IEEE
Citation
Trosten, Chakraborty, Løkse, Wickstrøm, Jenssen, Kampffmeyer. Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-shot Learning with Hyperspherical Embeddings. Computer Vision and Pattern Recognition. 2023:7527-7536
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2023 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)