Vis enkel innførsel

dc.contributor.authorLamproudis, Anastasios
dc.contributor.authorMora, Sara
dc.contributor.authorOlsen Svenning, Therese
dc.contributor.authorTorsvik, Torbjørn
dc.contributor.authorChomutare, Taridzo Fred
dc.contributor.authorNgo, Phuong Dinh
dc.contributor.authorDalianis, Hercules
dc.date.accessioned2024-02-16T14:03:32Z
dc.date.available2024-02-16T14:03:32Z
dc.date.issued2023
dc.description.abstractThe lack of relevant annotated datasets represents one key limitation in the application of Natural Language Processing techniques in a broad number of tasks, among them Protected Health Information (PHI) identification in Norwegian clinical text. In this work, the possibility of exploiting resources from Swedish, a very closely related language, to Norwegian is explored. The Swedish dataset is annotated with PHI information. Different processing and text augmentation techniques are evaluated, along with their impact in the final performance of the model. The augmentation techniques, such as injection and generation of both Norwegian and Scandinavian Named Entities into the Swedish training corpus, showed to increase the performance in the de-identification task for both Danish and Norwegian text.This trend was also confirmed by the evaluation of model performance on a sample Norwegian gastro surgical clinical text.en_US
dc.descriptionSource at <a href=https://knowledge.amia.org/event-data>https://knowledge.amia.org/event-data</a>.en_US
dc.identifier.citationLamproudis, Mora, Olsen Svenning, Torsvik, Chomutare, Ngo, Dalianis. De-identifying Norwegian Clinical Text using Resources from Swedish and Danish. AMIA Annual Symposium Proceedings. 2023;2023:456-464en_US
dc.identifier.cristinIDFRIDAID 2212930
dc.identifier.issn1559-4076
dc.identifier.issn1942-597X
dc.identifier.urihttps://hdl.handle.net/10037/32958
dc.language.isoengen_US
dc.relation.journalAMIA Annual Symposium Proceedings
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785939/
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.titleDe-identifying Norwegian Clinical Text using Resources from Swedish and Danishen_US
dc.type.versionsubmittedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel