ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using a large open clinical corpus for improved ICD-10 diagnosis coding

Permanent lenke
https://hdl.handle.net/10037/32959
Thumbnail
Åpne
article.pdf (290.3Kb)
Akseptert manusversjon (PDF)
Dato
2023
Type
Journal article
Tidsskriftartikkel
Forfatter
Lamproudis, Anastasios; Olsen Svenning, Therese; Torsvik, Torbjørn; Chomutare, Taridzo Fred; Budrionis, Andrius; Ngo, Phuong Dinh; Vakili, Thomas; Dalianis, Hercules
Sammendrag
With the recent advances in natural language processing and deep learning, the development of tools that can assist medical coders in ICD-10 diagnosis coding and increase their efficiency in coding discharges ummaries is significantly more viable than before. To that end, one important component in the development of these models is the datasets used to train them. In this study, such datasets are presented, and it is shown that one of them can be used to develop a BERT-based language model that can consistently perform well in assigning ICD-10 codes to discharge summaries written in Swedish. Most importantly, it can be used in a coding support setup where a tool can recommend potential codes to the coders. This reduces the range of potential codes to consider and, in turn, reduces the workload of the coder. Moreover, the de-identified and pseudonymised dataset is open to use for academic users.
Beskrivelse
Source at https://knowledge.amia.org/event-data.
Sitering
Lamproudis, Olsen Svenning, Torsvik, Chomutare, Budrionis, Ngo, Vakili, Dalianis. Using a large open clinical corpus for improved ICD-10 diagnosis coding. AMIA Annual Symposium Proceedings. 2023;2023:465-473
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring