ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On C-class equations

Permanent link
https://hdl.handle.net/10037/33037
DOI
https://doi.org/10.4310/cag.2022.v30.n10.a2
Thumbnail
View/Open
article.pdf (583.1Kb)
Accepted manuscript version (PDF)
Date
2023-09-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Čap, Andreas; Doubrov, Boris; The, Dennis
Abstract
The concept of a C-class of differential equations goes back to E. Cartan with the upshot that generic equations in a C-class can be solved without integration. While Cartan’s definition was in terms of differential invariants being first integrals, all results exhibiting C-classes that we are aware of are based on the fact that a canonical Cartan geometry associated to the equations in the class descends to the space of solutions. For sufficiently low orders, these geometries belong to the class of parabolic geometries and the results follow from the general characterization of geometries descending to a twistor space.

In this article, we answer the question of whether a canonical Cartan geometry descends to the space of solutions in the remaining cases of scalar ODE of order at least four and of systems of ODE of order at least three. As in the lower order cases, this is characterized by the vanishing of the generalized Wilczynski invariants, which are defined via the linearization at a solution. The canonical Cartan geometries (which are not parabolic geometries) are a slight variation of those available in the literature based on a recent general construction. All the verifications needed to apply this construction for the classes of ODE we study are carried out in the article, which thus also provides a complete alternative proof for the existence of canonical Cartan connections associated to higher order (systems of) ODE.

Publisher
International Press
Citation
Čap, Doubrov, The. On C-class equations. Communications in analysis and geometry. 2023;30(10):2231-2266
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [354]
Copyright 2023 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)