ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts

Permanent lenke
https://hdl.handle.net/10037/33194
Thumbnail
Åpne
article.pdf (920.6Kb)
Akseptert manusversjon (PDF)
Dato
2023
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Agarwal, Rohit; Prasad, Dilip Kumar; Horsch, Ludwig Alexander; Gupta, Deepak Kumar
Sammendrag
Many real-world applications based on online learning produce streaming data that is haphazard in nature, i.e., contains missing features, features becoming obsolete in time, the appearance of new features at later points in time and a lack of clarity on the total number of input features. These challenges make it hard to build a learnable system for such applications, and almost no work exists in deep learning that addresses this issue. In this paper, we present Aux-Drop, an auxiliary dropout regularization strategy for online learning that handles the haphazard input features in an effective manner. Aux-Drop adapts the conventional dropout regularization scheme for the haphazard input feature space ensuring that the final output is minimally impacted by the chaotic appearance of such features. It helps to prevent the co-adaptation of especially the auxiliary and base features, as well as reduces the strong dependence of the output on any of the auxiliary inputs of the model. This helps in better learning for scenarios where certain features disappear in time or when new features are to be modelled. The efficacy of Aux-Drop has been demonstrated through extensive numerical experiments on SOTA benchmarking datasets that include Italy Power Demand, HIGGS, SUSY and multiple UCI datasets. The code is available at https://github.com/Rohit102497/Aux-Drop.
Beskrivelse
Source at https://www.jmlr.org/tmlr/index.html.
Forlag
Transactions on Machine Learning Research (TMLR)
Sitering
Agarwal R, Prasad DK, Horsch A, Gupta. Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts. Transactions on Machine Learning Research (TMLR). 2023
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring