On uniqueness of submaximally symmetric parabolic geometries
Permanent lenke
https://hdl.handle.net/10037/33306Dato
2024-01-24Type
Journal articleTidsskriftartikkel
Peer reviewed
Forfatter
The, DennisSammendrag
Among (regular, normal) parabolic geometries of type (G,P), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(G). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When G is a complex or split-real simple Lie group of rank at least three or when (G,P) = (G2, P2), we establish a local uniqueness result for submaximally symmetric structures of type (G,P).
Forlag
World Scientific PublishingSitering
The. On uniqueness of submaximally symmetric parabolic geometries. International Journal of Mathematics. 2024Metadata
Vis full innførselSamlinger
Copyright 2024 The Author(s)