ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Guided U-Net Aided Efficient Image Data Storing with Shape Preservation

Permanent lenke
https://hdl.handle.net/10037/33413
Thumbnail
Åpne
article.pdf (23.94Mb)
Akseptert manusversjon (PDF)
Dato
2023-11-02
Type
Chapter
Bokkapittel

Forfatter
Banerjee, Nirwan; Malakar, Samir; Gupta, Deepak Kumar; Horsch, Ludwig Alexander; Prasad, Dilip Kumar
Sammendrag
The proliferation of high-content microscopes ( 32 GB for a single image) and the increasing amount of image data generated daily have created a pressing need for compact storage solutions. Not only is the storage of such massive image data cumbersome, but it also requires a significant amount of storage and data bandwidth for transmission. To address this issue, we present a novel deep learning technique called Guided U-Net (GU-Net) that compresses images by training a U-Net architecture with a loss function that incorporates shape, budget, and skeleton losses. The trained model learns to selects key points in the image that need to be stored, rather than the entire image. Compact image representation is different from image compression because the former focuses on assigning importance to each pixel in an image and selecting the most important ones for storage whereas the latter encodes information of the entire image for more efficient storage. Experimental results on four datasets (CMATER, UiTMito, MNIST, and HeLA) show that GU-Net selects only a small percentage of pixels as key points (3%, 3%, 5%, and 22% on average, respectively), significantly reducing storage requirements while preserving essential image features. Thus, this approach offers a more efficient method of storing image data, with potential applications in a range of fields where large-scale imaging is a vital component of research and development.
Forlag
Springer Nature
Sitering
Banerjee N, Malakar S, Gupta DK, Horsch A, Prasad DK: Guided U-Net Aided Efficient Image Data Storing with Shape Preservation. In: Lu H, Blumenstein M, Cho, Liu C, Yagi, Kamiya. Lecture Notes on Computer Science: Pattern Recognition - Proceedings, Part 1 of the 7th Asian, 2023. Springer p. 317-330
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]
Copyright 2023 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring