ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards ultrafast quantitative phase imaging via differentiable microscopy [Invited]

Permanent lenke
https://hdl.handle.net/10037/34817
DOI
https://doi.org/10.1364/BOE.504954
Thumbnail
Åpne
article.pdf (23.49Mb)
Publisert versjon (PDF)
Dato
2024-02-22
Type
Journal article

Forfatter
Haputhanthri, Udith; Herath, Kithmini; Hettiarachchi, Ramith; Kariyawasam, Hasindu; Ahmad, Azeem; Ahluwalia, Balpreet Singh; Acharya, Ganesh Prasad; Edussooriya, Chamira U.S.; Wadduwage, Dushan N.
Sammendrag
With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form so that more information can be transferred beyond the existing hardware bottleneck of the image sensor. To this end, we present a numerical simulation of a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy (∂-QPM) first uses learnable optical processors as image compressors. The intensity representations produced by these optical processors are then captured by the imaging sensor. Finally, a reconstruction network running on a computer decompresses the QPM images post aquisition. In numerical experiments, the proposed system achieves compression of × 64 while maintaining the SSIM of ∼0.90 and PSNR of ∼30 dB on cells. The results demonstrated by our experiments open up a new pathway to QPM systems that may provide unprecedented throughput improvements.
Forlag
Optica Publishing Group
Sitering
Haputhanthri, Herath, Hettiarachchi, Kariyawasam, Ahmad, Ahluwalia, Acharya, Edussooriya, Wadduwage. Towards ultrafast quantitative phase imaging via differentiable microscopy [Invited]. Biomedical Optics Express. 2024;15(3):1798-1812
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2024 Optica Publishing Group under the terms of the Open Access Publishing Agreement

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring