Near-optimality and robustness in energy systems modelling
Permanent link
https://hdl.handle.net/10037/35496Date
2024-11-27Type
Doctoral thesisDoktorgradsavhandling
Author
van Greevenbroek, KoenAbstract
To avert a climate disaster, the global energy system quickly needs to transition to net-zero emissions. This will involve drastic reductions in the use of fossil fuels on one hand and electrification based on renewable energy on the other hand. Research has shown that the transition is technically feasible, but presents us with difficult trade-offs and compromises. Since renewable energy is more exposed to variability, the future will also present us with new robustness challenges.
Energy systems optimisation models, used to investigate possible future energy system designs, by default optimise for the least total cost. However, recent research has shown that near-optimal solutions, which are feasible and only slightly more expensive than cost-optimal ones, open up more options and create space for exploring factors that are hard to quantify. In this thesis, we develop a new methodology for approximating the space of all near-optimal solutions. It is applied to mapping out regional planning flexibility in Europe, analysing possible pathways for European green hydrogen production and studying how weather years impact the space of system designs. Across the board, the results show a wealth of options, creating much-needed space for public debate.
The advances in near-optimal methods are balanced by contributions towards improving robustness in energy systems design. We introduce a new method for identifying extreme weather events in energy systems with high shares of renewables, and use it to find the weather regimes posing the greatest risk of blackouts to a future European power system. By intersecting near-optimal spaces, we explore European energy system designs that are not only robust against different weather years but also various scenarios, including changing technology costs and land-use restrictions. In a case study on Norwegian hydrogen exports, we show that while technically feasible, the systemic impact of exports would face significant challenges in terms of land-use, social acceptance and equity. By taking a holistic perspective, energy systems modelling can help us brace for an uncertain future.
For å unngå ein total klimakrise er det kritisk at det globale energisystemet går mot netto null utslepp so raskt som mogleg. Dette vil innebere ein drastisk nedgang i bruken av fossile brennstoff på den ein side, og auka elektrifisering basert på fornybar kraft på den andre. Forskinga viser at det let seg gjera, reint teknisk sett, men at overgangen vil by på vanskelege kompromiss og avvegingar. Fordi fornybar kraft er meir variabel, får me også større utfordringar knytt til pålitelegheit.
Energisystemmodellar blir brukte til å analysere framtidige energisystem, og blir vanlegvis optimaliserte for lågast totalkostnad. Nyare forsking har derimot peika på nær-optimale løysingar, som er funksjonelle og berre litt dyrare enn dei kostnads-optimale, som interessante. Dei opnar opp for fleire moglegheitar, og skapar rom for å utforska faktorar som er vanskelege å kvantifisere. I denne avhandlinga utviklar me ein ny metodikk for å kartleggja rommet av alle nær-optimale løysingar til ein modell. Metoden blir nytta til å kasta lys på regional planleggingsfleksibilitet i Europa, til å analysere moglege framtider for Europeisk produksjon av grønt hydrogen, samt til å forske på korleis vêret påverkar moglege energisystemløysingar.
Framgangen i nær-optimale metodar vert balansert av bidrag til forskinga rundt robuste energisystem. Me introduserer ein ny måte å identifisere dei mest utfordrande vêrsituasjonane for energisystem med ein høg grad av fornybar kraft, og brukar resultata til å peike på kva type vêrregime som vil kunne føre til straumkutt i framtidas Europa. Ved å rekna ut snittet av fleire nær-optimale rom finn me løysingar for det Europeiske energisystemet som er robuste, ikkje berre mot endrande vêr men òg ulike kostnadar og areal-avgrensingar. Til slutt ser me på norsk eksport av hydrogen; dette synar seg å vera mogleg i stor skala, men dei gjennomgripande konsekvensane for arealbruk, sosial aksept og fordelingspolitikk vil utgjera store hinder. Ved å ta omsyn til heilheita kan energisystemmodellering hjelpa oss gå ei usikker framtid i møte.
Has part(s)
Paper 1: Grochowicz, A., van Greevenbroek, K., Benth, F.E. & Zeyringer, M. (2023). Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Economics, 118, 106496. Also available in Munin at https://hdl.handle.net/10037/28061.
Paper 2: Grochowicz, A., van Greevenbroek, K. & Bloomfield, H.C. (2024). Using power system modelling outputs to identify weather-induced extreme events in highly renewable systems. Environmental Research Letters, 19(5), 054 038. Also available in Munin at https://hdl.handle.net/10037/35495.
Paper 3: van Greevenbroek, K., Grochowicz, A., Zeyringer, M. & Benth, F.E. Enabling agency: Trade-offs between regional and integrated energy systems design flexibility. (Manuscript). Also available on arXiv at https://doi.org/10.48550/arXiv.2312.11264.
Paper 4: van Greevenbroek, K., Schmidt, J., Zeyringer, M. & Horsch, A. Diverse pathways for green hydrogen production in Europe. (Manuscript).
Paper 5: Cheng, C., van Greevenbroek, K. & Viole, I. (2024). The competitive edge of Norway’s hydrogen by 2030: Socioenvironmental considerations. International Journal of Hydrogen Energy, 85, 962–975. Also available in Munin at https://hdl.handle.net/10037/35430.
Related research data
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., … Thépaut, J-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47.Publisher
UiT Norges arktiske universitetUiT The Arctic University of Norway
Metadata
Show full item recordCollections
The following license file are associated with this item: