Vis enkel innførsel

dc.contributor.authorYapar, Cagkan
dc.contributor.authorJaensch, Fabian
dc.contributor.authorLevie, Ron
dc.contributor.authorKutyniok, Gitta Astrid Hildegard
dc.contributor.authorCaire, Giuseppe
dc.date.accessioned2024-11-11T09:33:11Z
dc.date.available2024-11-11T09:33:11Z
dc.date.issued2024-06-26
dc.description.abstractPathloss quantifies the reduction in power density of a signal radiated from a transmitter. The attenuation is due to large-scale effects such as free-space propagation loss and interactions (e.g., penetration, reflection, and diffraction) of the signal with objects such as buildings, vehicles, trees, and pedestrians in the propagation environment. Many current or planned wireless communications applications require the knowledge (or a reliable approximation) of the pathloss on a dense grid (radio map) of the environment of interest. Deterministic simulation methods such as ray tracing are known to provide very good estimates of pathloss values. However, their high computational complexity makes them unsuitable for most of the applications envisaged. To promote research and facilitate a fair comparison among the recently proposed fast and accurate deep learning-based pathloss radio map prediction methods, we have organized the ICASSP 2023 First Pathloss Radio Map Prediction Challenge. In this overview paper, we describe the pathloss radio map prediction problem, provide a literature survey of the current state of the art, describe the challenge datasets, the challenge task, and the challenge evaluation methodology. Finally, we provide a brief overview of the submitted methods and present the results of the challenge.en_US
dc.identifier.citationYapar, Jaensch, Levie, Kutyniok, Caire. Overview of the First Pathloss Radio Map Prediction Challenge. IEEE Open Journal of Signal Processing. 2024;5:948-963en_US
dc.identifier.cristinIDFRIDAID 2292145
dc.identifier.doi10.1109/OJSP.2024.3419563
dc.identifier.issn2644-1322
dc.identifier.urihttps://hdl.handle.net/10037/35617
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Open Journal of Signal Processing
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)en_US
dc.titleOverview of the First Pathloss Radio Map Prediction Challengeen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)