Vis enkel innførsel

dc.contributor.authorNewman, Thomas
dc.contributor.authorStroeve, Julienne C.
dc.contributor.authorNandan, Vishnu
dc.contributor.authorWillatt, Rosemary C.
dc.contributor.authorMead, James B.
dc.contributor.authorMallett, Robbie David Christopher
dc.contributor.authorTsamados, Michel
dc.contributor.authorHuntemann, Marcus
dc.contributor.authorHendricks, Stefan
dc.contributor.authorSpreen, Gunnar
dc.contributor.authorTonboe, Rasmus T.
dc.date.accessioned2025-01-08T10:13:57Z
dc.date.available2025-01-08T10:13:57Z
dc.date.issued2024-11-19
dc.description.abstractThis paper presents a practical step-by-step approach to Frequency Modulated Continuous Wave (FMCW) radar nonlinearity correction (deconvolution), utilizing surface-based Ku- and Ka-band radar data collected over nilas ice within a newly-opened sea ice lead during the 2019/2020 MOSAiC expedition. Two performance metrics are introduced to evaluate deconvolution effectiveness: the spurious free dynamic range (SFDR), which quantifies sidelobe suppression, and the leading edge width (LEW), which quantifies the improvement in surface return clarity. The impact of deconvolution waveforms on different survey dates, radar polarizations, and surface types is examined using echograms and quantitative metrics. Deconvolution results in a maximum SFDR increase of 28 dB, with a maximum 3 dB decline in deconvolution performance observed over an 8-day period and a maximum decline of 15 dB observed over a 71-day period. The LEW values indicate that the effectiveness of deconvolution in enhancing interface clarity depends on the combination of pre-deconvolution sidelobe shape, prominence of the surface return, the influence of snowpack returns, as well as a time-dependent reduction in deconvolution performance. Deconvolution significantly improves surface return clarity for cross-polarized radar data, where weak surface returns are obscured by returns from within the snowpack. The results demonstrate that deconvolution performance is most effective shortly after deconvolution waveform characterization. Therefore, it is recommended to perform at least weekly calibrations using a large metal sheet and ideally calibration before/after data collection to ensure optimal deconvolution performance and effective sidelobe suppression.en_US
dc.identifier.citationNewman, Stroeve, Nandan, Willatt, Mead, Mallett, Tsamados, Huntemann, Hendricks, Spreen, Tonboe. A Practical Approach to FMCW Radar Deconvolution in the Sea Ice Domain. IEEE Access. 2024;12:174901-174933en_US
dc.identifier.cristinIDFRIDAID 2332153
dc.identifier.doi10.1109/ACCESS.2024.3502502
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10037/36109
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE Access
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101003826/EU/Climate relevant interactions and feedbacks: the key role of sea ice and snow in the polar and global climate system/CRiceS/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleA Practical Approach to FMCW Radar Deconvolution in the Sea Ice Domainen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)