Homogenization of nonlocal spectral problems
Permanent link
https://hdl.handle.net/10037/36193Date
2024-11-11Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
We consider a spectral problem for convolution-type operators in environments with locally periodic microstructure and study the asymptotic behavior of the bottom of the spectrum. We show that the bottom point of the spectrum converges as the microstructure period tends to zero, and identify the limit in terms of an additive eigenvalue problem for effective Hamilton–Jacobi equation. In the periodic case, we establish a more accurate two-term asymptotic formula.
Publisher
Springer NatureCitation
Piatnitski, Rybalko. Homogenization of nonlocal spectral problems. Zeitschrift für Angewandte Mathematik und Physik. 2024;75(6)Metadata
Show full item record
Copyright 2024 The Author(s)