Vis enkel innførsel

dc.contributor.authorSarmad, Muhammad
dc.contributor.authorKampffmeyer, Michael Christian
dc.contributor.authorSalberg, Arnt-Børre
dc.date.accessioned2025-03-17T10:12:26Z
dc.date.available2025-03-17T10:12:26Z
dc.date.issued2024-09-05
dc.description.abstractDiffusion models have obtained photo-realistic results on various super-resolution tasks. However, existing approaches typically require the availability of high-resolution and paired training data, which often is not readily available in many remote sensing scenarios. To enhance multi-spectral Sentinel 2 (S2) satellite images – at a ground sampling distance (GSD) ranging from 10m to 60m – without requiring high-resolution or paired training data, we therefore propose and evaluate a novel set of approaches to leverage traditional pansharpening within a diffusion model context to simulate the required training data. We extensively compare the proposed methods and demonstrate that by utilizing unpaired Spot-6/7 data, we are able to produce photo-realistic S2 images at a resolution of 2.5m.en_US
dc.identifier.citationSarmad, Kampffmeyer, Salberg. Diffusion Models with Cross-Modal Data for Super-Resolution of Sentinel-2 To 2.5 Meter Resolution. IEEE International Geoscience and Remote Sensing Symposium proceedings. 2024: 1103-1107en_US
dc.identifier.cristinIDFRIDAID 2296097
dc.identifier.doi10.1109/IGARSS53475.2024.10641882
dc.identifier.issn2153-6996
dc.identifier.issn2153-7003
dc.identifier.urihttps://hdl.handle.net/10037/36706
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE International Geoscience and Remote Sensing Symposium proceedings
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleDiffusion Models with Cross-Modal Data for Super-Resolution of Sentinel-2 To 2.5 Meter Resolutionen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel