Vis enkel innførsel

dc.contributor.authorMaier-Hein, Lena
dc.contributor.authorReinke, Annika
dc.contributor.authorGodau, Patrick
dc.contributor.authorTizabi, Minu D.
dc.contributor.authorBuettner, Florian
dc.contributor.authorChristodoulou, Evangelia
dc.contributor.authorGlocker, Ben
dc.contributor.authorIsensee, Fabian
dc.contributor.authorKleesiek, Jens
dc.contributor.authorKozubek, Michal
dc.contributor.authorReyes, Mauricio
dc.contributor.authorRiegler, Michael
dc.contributor.authorWiesenfarth, Manuel
dc.contributor.authorKavur, A. Emre
dc.contributor.authorSudre, Carole H.
dc.contributor.authorBaumgartner, Michael
dc.contributor.authorEisenmann, Matthias
dc.contributor.authorHeckmann-Nötzel, Doreen
dc.contributor.authorRädsch, Tim
dc.contributor.authorAcion, Laura
dc.contributor.authorAntonelli, Michela
dc.contributor.authorArbel, Tal
dc.contributor.authorBakas, Spyridon
dc.contributor.authorBenis, Arriel
dc.contributor.authorBlaschko, Matthew B.
dc.contributor.authorCardoso, M. Jorge
dc.contributor.authorCheplygina, Veronika
dc.contributor.authorCimini, Beth A.
dc.contributor.authorCollins, Gary S.
dc.contributor.authorFarahani, Keyvan
dc.contributor.authorFerrer, Luciana
dc.contributor.authorGaldran, Adrian
dc.contributor.authorvan Ginneken, Bram
dc.contributor.authorHaase, Robert
dc.contributor.authorHashimoto, Daniel A.
dc.contributor.authorHoffman, Michael M.
dc.contributor.authorHuisman, Merel
dc.contributor.authorJannin, Pierre
dc.contributor.authorKahn, Charles E.
dc.contributor.authorKainmueller, Dagmar
dc.contributor.authorKainz, Bernhard
dc.contributor.authorKarargyris, Alexandros
dc.contributor.authorKarthikesalingam, Alan
dc.contributor.authorKofler, Florian
dc.contributor.authorKopp-Schneider, Annette
dc.contributor.authorKreshuk, Anna
dc.contributor.authorKurc, Tahsin
dc.contributor.authorLandman, Bennett A.
dc.contributor.authorLitjens, Geert
dc.contributor.authorMadani, Amin
dc.contributor.authorMaier-Hein, Klaus
dc.contributor.authorMartel, Anne L.
dc.contributor.authorMattson, Peter
dc.contributor.authorMeijering, Erik
dc.contributor.authorMenze, Bjoern
dc.contributor.authorMoons, Karel G. M.
dc.contributor.authorMüller, Henning
dc.contributor.authorNichyporuk, Brennan
dc.contributor.authorNickel, Felix
dc.contributor.authorPetersen, Jens
dc.contributor.authorRajpoot, Nasir
dc.contributor.authorRieke, Nicola
dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorSánchez, Clara I.
dc.contributor.authorShetty, Shravya
dc.contributor.authorvan Smeden, Maarten
dc.contributor.authorSummers, Ronald M.
dc.contributor.authorTaha, Abdel A.
dc.contributor.authorTiulpin, Aleksei
dc.contributor.authorTsaftaris, Sotirios A.
dc.contributor.authorVan Calster, Ben
dc.contributor.authorVaroquaux, Gaël
dc.contributor.authorJäger, Paul F.
dc.date.accessioned2025-03-17T10:17:17Z
dc.date.available2025-03-17T10:17:17Z
dc.date.issued2024-02-12
dc.description.abstractIncreasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.en_US
dc.identifier.citationMaier-Hein, Reinke, Godau, Tizabi, Buettner, Christodoulou, Glocker, Isensee, Kleesiek, Kozubek, Reyes, Riegler, Wiesenfarth, Kavur, Sudre, Baumgartner, Eisenmann, Heckmann-Nötzel, Rädsch, Acion, Antonelli, Arbel, Bakas, Benis, Blaschko, Cardoso, Cheplygina, Cimini, Collins, Farahani, Ferrer, Galdran, van Ginneken, Haase, Hashimoto, Hoffman, Huisman, Jannin, Kahn, Kainmueller, Kainz, Karargyris, Karthikesalingam, Kofler, Kopp-Schneider, Kreshuk, Kurc, Landman, Litjens, Madani, Maier-Hein, Martel, Mattson, Meijering, Menze, Moons, Müller, Nichyporuk, Nickel, Petersen, Rajpoot, Rieke, Saez-Rodriguez, Sánchez, Shetty, van Smeden, Summers, Taha, Tiulpin, Tsaftaris, Van Calster, Varoquaux, Jäger. Metrics reloaded: recommendations for image analysis validation. Nature Methods. 2024;21(2):195-212en_US
dc.identifier.cristinIDFRIDAID 2252764
dc.identifier.doi10.1038/s41592-023-02151-z
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttps://hdl.handle.net/10037/36708
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalNature Methods
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleMetrics reloaded: recommendations for image analysis validationen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel