Vis enkel innførsel

dc.contributor.authorReinke, Annika
dc.contributor.authorTizabi, Minu D.
dc.contributor.authorBaumgartner, Michael
dc.contributor.authorEisenmann, Matthias
dc.contributor.authorHeckmann-Nötzel, Doreen
dc.contributor.authorKavur, A. Emre
dc.contributor.authorRädsch, Tim
dc.contributor.authorSudre, Carole H.
dc.contributor.authorAcion, Laura
dc.contributor.authorAntonelli, Michela
dc.contributor.authorArbel, Tal
dc.contributor.authorBakas, Spyridon
dc.contributor.authorBenis, Arriel
dc.contributor.authorBuettner, Florian
dc.contributor.authorCardoso, M. Jorge
dc.contributor.authorCheplygina, Veronika
dc.contributor.authorChen, Jianxu
dc.contributor.authorChristodoulou, Evangelia
dc.contributor.authorCimini, Beth A.
dc.contributor.authorFarahani, Keyvan
dc.contributor.authorFerrer, Luciana
dc.contributor.authorGaldran, Adrian
dc.contributor.authorvan Ginneken, Bram
dc.contributor.authorGlocker, Ben
dc.contributor.authorGodau, Patrick
dc.contributor.authorHashimoto, Daniel A.
dc.contributor.authorHoffman, Michael M.
dc.contributor.authorHuisman, Merel
dc.contributor.authorIsensee, Fabian
dc.contributor.authorJannin, Pierre
dc.contributor.authorKahn, Charles E.
dc.contributor.authorKainmueller, Dagmar
dc.contributor.authorKainz, Bernhard
dc.contributor.authorKarargyris, Alexandros
dc.contributor.authorKleesiek, Jens
dc.contributor.authorKofler, Florian
dc.contributor.authorKooi, Thijs
dc.contributor.authorKopp-Schneider, Annette
dc.contributor.authorKozubek, Michal
dc.contributor.authorKreshuk, Anna
dc.contributor.authorKurc, Tahsin
dc.contributor.authorLandman, Bennett A.
dc.contributor.authorLitjens, Geert
dc.contributor.authorMadani, Amin
dc.contributor.authorMaier-Hein, Klaus
dc.contributor.authorMartel, Anne L.
dc.contributor.authorMeijering, Erik
dc.contributor.authorMenze, Bjoern
dc.contributor.authorMoons, Karel G. M.
dc.contributor.authorMüller, Henning
dc.contributor.authorNichyporuk, Brennan
dc.contributor.authorNickel, Felix
dc.contributor.authorPetersen, Jens
dc.contributor.authorRafelski, Susanne M.
dc.contributor.authorRajpoot, Nasir
dc.contributor.authorReyes, Mauricio
dc.contributor.authorRiegler, Michael
dc.contributor.authorRieke, Nicola
dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorSánchez, Clara I.
dc.contributor.authorShetty, Shravya
dc.contributor.authorSummers, Ronald M.
dc.contributor.authorTaha, Abdel A.
dc.contributor.authorTiulpin, Aleksei
dc.contributor.authorTsaftaris, Sotirios A.
dc.contributor.authorVan Calster, Ben
dc.contributor.authorVaroquaux, Gaël
dc.contributor.authorYaniv, Ziv R.
dc.contributor.authorJäger, Paul F.
dc.contributor.authorMaier-Hein, Lena
dc.date.accessioned2025-03-17T10:20:55Z
dc.date.available2025-03-17T10:20:55Z
dc.date.issued2024-02-12
dc.description.abstractValidation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.en_US
dc.identifier.citationReinke, Tizabi, Baumgartner, Eisenmann, Heckmann-Nötzel, Kavur, Rädsch, Sudre, Acion, Antonelli, Arbel, Bakas, Benis, Buettner, Cardoso, Cheplygina, Chen, Christodoulou, Cimini, Farahani, Ferrer, Galdran, van Ginneken, Glocker, Godau, Hashimoto, Hoffman, Huisman, Isensee, Jannin, Kahn, Kainmueller, Kainz, Karargyris, Kleesiek, Kofler, Kooi, Kopp-Schneider, Kozubek, Kreshuk, Kurc, Landman, Litjens, Madani, Maier-Hein, Martel, Meijering, Menze, Moons, Müller, Nichyporuk, Nickel, Petersen, Rafelski, Rajpoot, Reyes, Riegler, Rieke, Saez-Rodriguez, Sánchez, Shetty, Summers, Taha, Tiulpin, Tsaftaris, Van Calster, Varoquaux, Yaniv, Jäger, Maier-Hein. Understanding metric-related pitfalls in image analysis validation. Nature Methods. 2024;21(2):182-194en_US
dc.identifier.cristinIDFRIDAID 2252424
dc.identifier.doi10.1038/s41592-023-02150-0
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttps://hdl.handle.net/10037/36709
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.journalNature Methods
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101002198/Norway/Neural Spectral Image Decoding/NEURAL SPICING/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleUnderstanding metric-related pitfalls in image analysis validationen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel