Vis enkel innførsel

dc.contributor.authorCepeda, Santiago
dc.contributor.authorRomero, Roberto
dc.contributor.authorLuque, Lidia
dc.contributor.authorGarcía-Pérez, Daniel
dc.contributor.authorBlasco, Guillermo
dc.contributor.authorLuppino, Luigi Tommaso
dc.contributor.authorKuttner, Samuel
dc.contributor.authorEsteban-Sinovas, Olga
dc.contributor.authorArrese, Ignacio
dc.contributor.authorSolheim, Ole Skeidsvoll
dc.contributor.authorEikenes, Live
dc.contributor.authorKarlberg, Anna Maria
dc.contributor.authorPérez-Núñez, Ángel
dc.contributor.authorZanier, Olivier
dc.contributor.authorSerra, Carlo
dc.contributor.authorStaartjes, Victor E.
dc.contributor.authorBianconi, Andrea
dc.contributor.authorRossi, Luca Francesco
dc.contributor.authorGarbossa, Diego
dc.contributor.authorEscudero, Trinidad
dc.contributor.authorHornero, Roberto
dc.contributor.authorSarabia, Rosario
dc.date.accessioned2025-03-19T10:02:10Z
dc.date.available2025-03-19T10:02:10Z
dc.date.issued2024-11-16
dc.description.abstractBackground - The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model’s performance with other available algorithms.<p> <p>Methods - To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model’s ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used.<p> <p>Results - The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort.<p> <p>Conclusions - Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.en_US
dc.identifier.citationCepeda, Romero, Luque, García-Pérez, Blasco, Luppino, Kuttner, Esteban-Sinovas, Arrese, Solheim, Eikenes, Karlberg, Pérez-Núñez, Zanier, Serra, Staartjes, Bianconi, Rossi, Garbossa, Escudero, Hornero, Sarabia. Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison. Neuro-Oncology Advances (NOA). 2024;6(1)en_US
dc.identifier.cristinIDFRIDAID 2367062
dc.identifier.doi10.1093/noajnl/vdae199
dc.identifier.issn2632-2498
dc.identifier.urihttps://hdl.handle.net/10037/36717
dc.language.isoengen_US
dc.publisherOxford University Pressen_US
dc.relation.journalNeuro-Oncology Advances (NOA)
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0en_US
dc.rightsAttribution-NonCommercial 4.0 International (CC BY-NC 4.0)en_US
dc.titleDeep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparisonen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)