ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

BrainIB: Interpretable Brain Network-Based Psychiatric Diagnosis With Graph Information Bottleneck

Permanent lenke
https://hdl.handle.net/10037/36734
DOI
https://doi.org/10.1109/TNNLS.2024.3449419
Thumbnail
Åpne
BrainIB_preprint.pdf (5.049Mb)
Akseptert manusversjon (PDF)
Dato
2024-09-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Zheng, Kaizhong; Yu, Shujian; Li, Baojuan; Jenssen, Robert; Chen, Badong
Sammendrag
Developing new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning (ML)-based classifiers using functional connectivity (FC) for psychiatric disorders and healthy controls (HCs) are developed to identify brain markers. However, existing ML-based diagnostic models are prone to overfitting (due to insufficient training samples) and perform poorly in new test environments. Furthermore, it is difficult to obtain explainable and reliable brain biomarkers elucidating the underlying diagnostic decisions. These issues hinder their possible clinical applications. In this work, we propose BrainIB, a new graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI), by leveraging the famed information bottleneck (IB) principle. BrainIB is able to identify the most informative edges in the brain (i.e., subgraph) and generalizes well to unseen data. We evaluate the performance of BrainIB against three baselines and seven state-of-the-art (SOTA) brain network classification methods on three psychiatric datasets and observe that our BrainIB always achieves the highest diagnosis accuracy. It also discovers the subgraph biomarkers that are consistent with clinical and neuroimaging findings. The source code and implementation details of BrainIB are freely available at the GitHub repository (https://github.com/SJYuCNEL/brain-and-Information-Bottleneck).
Forlag
IEEE
Sitering
Zheng K, Yu S, Li, Jenssen R, Chen B. BrainIB: Interpretable Brain Network-Based Psychiatric Diagnosis With Graph Information Bottleneck. IEEE Transactions on Neural Networks and Learning Systems. 2024
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring