ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks

Permanent lenke
https://hdl.handle.net/10037/36738
Thumbnail
Åpne
article.pdf (22.50Mb)
Innsendt manusversjon (PDF)
Dato
2024
Type
Journal article
Tidsskriftartikkel

Forfatter
Møller, Bjørn; Igel, Christian; Wickstrøm, Kristoffer Knutsen; Sporring, Jon; Jenssen, Robert; Ibragimov, Bulat
Sammendrag
Unsupervised representation learning has become an important ingredient of today’s deep learning systems. However, only a few methods exist that explain a learned vector embedding in the sense of providing information about which parts of an input are the most important for its representation. These methods generate the explanation for a given input after the model has been evaluated and tend to produce either inaccurate explanations or are slow, which limits their practical use. To address these limitations, we introduce the Neural Explanation Masks (NEM) framework, which turns a fixed representation model into a self-explaining model by augmenting it with a masking network. This network provides occlusion-based explanations in parallel to computing the representations during inference. We present an instance of this framework, the NEM-U (NEM using U-net structure) architecture, which leverages similarities between segmentation and occlusion-based masks. Our experiments show that NEM-U generates explanations faster and with lower complexity compared to the current state-of-the-art while maintaining high accuracy as measured by locality.
Forlag
PMLR
Sitering
Møller B, Igel C, Wickstrøm KK, Sporring J, Jenssen, Ibragimov. Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks. Proceedings of Machine Learning Research (PMLR). 2024;235
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring