ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interrogating Sea Ice Predictability with Gradients

Permanent lenke
https://hdl.handle.net/10037/36776
DOI
https://doi.org/10.1109/LGRS.2024.3366308
Thumbnail
Åpne
a1.pdf (8.650Mb)
Akseptert manusversjon (PDF)
Dato
2024-02-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Joakimsen, Harald Lykke; Martinsen, Iver; Luppino, Luigi Tommaso; McDonald, Andrew; Hosking, Scott; Jenssen, Robert
Sammendrag
Predicting sea ice concentration (SIC) is an important task in climate analysis. The recently proposed deep learning system IceNet is the state-of-the-art sea ice prediction model. IceNet takes high-dimensional climate simulations and observational data as input features and forecasts SIC for the next 6 months over a spatial grid over the northern hemisphere. The model has proven to be particularly good at predicting extreme sea ice events compared with previous dynamical models, but lacks interpretability. In the original IceNet paper, a permute-and-predict approach was taken for assessing feature importance. However, this approach is not capable of revealing whether a feature contributes positively or negatively to the final prediction, nor can it reveal the importance of features over the spatial grid of predictions. In this letter, we take steps to instead interrogate the effect of the IceNet input feature with a gradient-based analysis, taking advantage of developments within the deep learning literature to open the so-called black box. Our analysis focuses on the unusually large sea ice extent event in September 2013 and indicates that IceNet places a strong emphasis on previous observations of SIC, linear trends, and seasonal components when making predictions. In our analysis, we identify which input features are most influential for the prediction and also which spatial location these measurements are particularly influential.
Forlag
IEEE
Sitering
Joakimsen, Martinsen, Luppino, McDonald, Hosking, Jenssen. Interrogating Sea Ice Predictability with Gradients. IEEE Geoscience and Remote Sensing Letters. 2024;21:1-5
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring