ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

AC Microgrid Modeling and Adaptive Control Using Biomimetic Valence Learning: An AI-Based Approach

Permanent lenke
https://hdl.handle.net/10037/36778
DOI
https://doi.org/10.1109/SmartGridComm60555.2024.10738109
Thumbnail
Åpne
article(1).pdf (2.621Mb)
Akseptert manusversjon (PDF)
Dato
2024-11-04
Type
Chapter
Bokkapittel

Forfatter
Derbas, Abd Alelah; Bordin, Chiara; Mishra, Sambeet; hamzeh, Mohsen; Blaabjerg, Frede
Sammendrag
AC microgrids play a crucial role in integrating distributed energy resources and facilitating localized power management in contemporary power networks. Nevertheless, conventional droop control methods in these microgrids have constraints in guaranteeing precise power distribution, stability of voltage/frequency, and flexibility in response to changing operating conditions. This study introduces an approach, with adaptive droop control using Biomimetic Valence Learning (BVLAC). Inspired by the emotional and rational decision-making processes within the brain, BVLAC dynamically adjusts droop coefficients, optimizing power sharing and transient response in microgrid operation. Simulations were conducted using SIMULINK/MATLAB and the results showcase the superiority of the proposed BVLAC approach in achieving precise power-sharing, maintaining voltage and frequency stability, and improving the control performance of microgrids, under varying load conditions. This work advances the field of microgrid control by offering a robust, AI-inspired solution for the challenges faced by conventional droop control techniques.
Forlag
IEEE
Sitering
Derbas AA, Bordin C, Mishra S, hamzeh M, Blaabjerg F: AC Microgrid Modeling and Adaptive Control Using Biomimetic Valence Learning: An AI-Based Approach. In: SmartGridComm 2024. 2024 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids-SmartGridComm, 2024. IEEE (Institute of Electrical and Electronics Engineers) p. 117-122
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [478]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring