Vis enkel innførsel

dc.contributor.authorLøvland, Andreas Berntsen
dc.contributor.authorFredriksen, Helge
dc.contributor.authorBjørndalen, John Markus
dc.date.accessioned2025-04-14T09:23:42Z
dc.date.available2025-04-14T09:23:42Z
dc.date.issued2025-03-17
dc.description.abstractVast databases on historical ship traffic are currently freely available in the form of AIS (Automatic Identification System) messages dating back to as early as 2002. This provides a rich source for training deep learning models for predicting various behaviors of vessels, which in this context is motivated by resource management of fisheries. In this paper, we explore the possibility for combining a transformer model’s powerful capabilities for long-term path prediction with added logic to infer probable destination harbors for fishing vessels. An additional baseline model is also developed for comparison, based on historically preferred harbors for the vessels. With AIS data from the Troms and Finnmark region of Norway, the prediction accuracy of the trained model is found to be highly dependent on the number of past tracked positions of the vessel. We foresee that a new and more precise model will need to incorporate not only dynamic AIS data, but static information about harbors and vessel types during training and inference.en_US
dc.identifier.citationLøvland, Fredriksen, Bjørndalen. Predicting the destination port of fishing vessels utilizing transformers. Maritime Transport Research. 2025en_US
dc.identifier.cristinIDFRIDAID 2371047
dc.identifier.doi10.1016/j.martra.2025.100131
dc.identifier.issn2666-822X
dc.identifier.urihttps://hdl.handle.net/10037/36882
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalMaritime Transport Research
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titlePredicting the destination port of fishing vessels utilizing transformersen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)