ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-Time Blood Glucose Prediction Reveals a Discrepancy Between Performance Metrics and Real-World Evaluations

Permanent lenke
https://hdl.handle.net/10037/36939
DOI
https://doi.org/10.1109/RCAR61438.2024.10671342
Thumbnail
Åpne
article.pdf (684.3Kb)
Akseptert manusversjon (PDF)
Dato
2024-09-13
Type
Chapter
Bokkapittel

Forfatter
Wolff, Miriam Kopperstad; Steinert, Martin; Fougner, Anders Lyngvi; Oh, Doyoung; Årsand, Eirik; Volden, Rune
Sammendrag
This study evaluates machine learning (ML) algorithms for predicting blood glucose (BG) levels, essential in real-time robotic diabetes control systems that integrate insulin pumps, continuous glucose monitors, and potentially additional sensors. Our objective is to use real-time deployment insights to guide future algorithm design. While existing research presents algorithms with strong performance metrics, these often rely on repetitive datasets, limiting real-world applicability. We compared a Ridge Regressor and a Long-Short-Term Memory deep neural network, focusing on their real-time deployment and evaluation. Initially, we validated our algorithms against a benchmark dataset to ensure consistency with published studies by calculating the root mean square error (RMSE). We then assessed the same models using data from a study participant within a smartphone application, evaluating real-time predictions through a user questionnaire. Our findings revealed a discrepancy between the performance metrics and real-world evaluation, suggesting these metrics might neglect complex transformations within hidden layers and fail to reflect critical situations. This study underscores the need for future research to refine evaluation methods that consider model behavior in critical scenarios and to develop models rooted in domain-specific knowledge, incorporating physiological constraints like insulin effects, to ensure alignment with physical reality.
Forlag
IEEE
Sitering
Wolff MK, Steinert MS, Fougner A L, Oh, Årsand E, Volden R: Real-Time Blood Glucose Prediction Reveals a Discrepancy Between Performance Metrics and Real-World Evaluations. In: Zhang H, Shi Q. Proceedings of the 2024 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2024. IEEE conference proceedings p. 570-575
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [478]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring