Vis enkel innførsel

dc.contributor.authorOvesen, Aril Bernhard
dc.contributor.authorNordmo, Tor-Arne Schmidt
dc.contributor.authorRiegler, Michael Alexander
dc.contributor.authorHalvorsen, Pål
dc.contributor.authorJohansen, Dag
dc.date.accessioned2025-04-24T12:22:11Z
dc.date.available2025-04-24T12:22:11Z
dc.date.issued2024
dc.description.abstractUncontrolled over-fishing has been exemplified by the UN as a serious ecological challenge and a major threat to sustainable food supplies. Emerging trends within governing bodies point towards digital solutions by deploying CCTV-based video monitoring systems on a large scale. We conjecture that such systems are not feasible when reliant on satellite broadband in remote areas, and expose workers aboard fishing vessels to unneeded manual surveillance. To facilitate this, we propose Dorvu, a AI-based multimedia distributed storage system designed for edge environments, with a specific focus on commercial fishery monitoring. Dorvu addresses the challenges of secure data storage, fault tolerance, availability, and remote access in hostile edge environments. The system employs a novel data distribution scheme involving sensor readings and AI video content extraction to ensure the preservation of forensic evidence even in unstable conditions. Experimental evaluations demonstrate the feasibility of real-time multimedia data collection, analysis, and distribution in networks of edge devices on-board active fishing vessels. Dorvu offers a practical alternative to current governmental surveillance trends that compromise data security and privacy, and we propose it as a solution for edge-based forensic data management in commercial f isheries and similar applications.en_US
dc.identifier.citationOvesen, Nordmo, Riegler, Halvorsen, Johansen: Sustainable Commercial Fishery Control Using Multimedia Forensics Data from Non-trusted, Mobile Edge Nodes. In: Rudinac S, Hanjalic A, Liem C, Worring M, Jónsson BÞ, Liu, Yamakata. 30th International Conference, MMM 2024, Amsterdam, The Netherlands, January 29 – February 2, 2024, Proceedings, Part IV, 2024. Springer p. 327-340en_US
dc.identifier.cristinIDFRIDAID 2318794
dc.identifier.isbn978-3-031-53302-0
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/10037/36940
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleSustainable Commercial Fishery Control Using Multimedia Forensics Data from Non-trusted, Mobile Edge Nodesen_US
dc.type.versionacceptedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel