ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Attention Seekers U-Net with Mamba for Sub-cellular Segmentation

Permanent lenke
https://hdl.handle.net/10037/36963
DOI
https://doi.org/10.1007/978-3-031-78198-8_26
Thumbnail
Åpne
article.pdf (1.546Mb)
Akseptert manusversjon (PDF)
Dato
2024-12-04
Type
Conference object
Konferansebidrag

Forfatter
Singha, Pratik; Sekh, Arif Ahmed
Sammendrag
Accurate segmentation of subcellular structures from microscopy images is crucial for understanding cellular processes and functions, but it presents significant challenges due to factors such as noise, low signal-to-noise ratios, limited resolution, and complex spatial arrangements. To address these challenges, we introduce CMU-Net, a novel hybrid architecture that combines the strengths of U-Net, Mamba blocks (SSMs), and Convolutional Block Attention Modules (CBAM). U-Net provides a strong foundation for feature extraction, Mamba blocks efficiently capture long-range dependencies, and CBAM modules refine feature representations by selectively focusing on relevant information. We evaluated CMU-Net on three diverse datasets consisting both fluorescence and label-free microscopy images of mitochondria and endoplasmic reticulum (ER). The quantitative and qualitative results demonstrate that CMU-Net consistently outperforms various baseline methods, including established CNN-based and Transformer-based models, achieving improved segmentation accuracy and boundary representation. This study highlights the potential of our hybrid approach to significantly contribute to the field of subcellular image analysis, promoting a deeper understanding of cellular organization and function. Code is available at https://github.com/beasthunter758/CMU-Net.
Forlag
Springer Nature
Serie
Lecture Notes in Computer Science (LNCS) ; null
Sitering
Singha, Sekh. Attention Seekers U-Net with Mamba for Sub-cellular Segmentation. Springer; 2024. Lecture Notes in Computer Science (LNCS)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2024 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring