Show simple item record

dc.contributor.authorPal, Ratnabali
dc.contributor.authorSekh, Arif Ahmed
dc.date.accessioned2025-04-29T11:03:41Z
dc.date.available2025-04-29T11:03:41Z
dc.date.issued2024-12-02
dc.description.abstractIn this study, we explore the potential of pre-trained deep learning models, proposing a new approach that emphasizes their reusability and adaptability. Our framework, termed “customizable” deep learning, facilities users to seamlessly integrate diverse pre-trained models for addressing new tasks and enhancing existing solutions. Furthermore, we introduce a “programmable” adapter that enables the flexible combination of different pre-trained modules, expanding the range of applications and customization options. Through empirical experiments, particularly focusing on Visual Question Answering (VQA) for visually impaired (VI) individuals, we demonstrate the practical effectiveness of our methodology. These contributions advance the deep learning field while promoting customization and re-usability across various domains and tasks. The code is available https://github.com/Ratnabali-Pal/CPDA-VQA.en_US
dc.identifier.citationPal, R., Kar, S., Sekh, A.A. (2025). Customizable and Programmable Deep Learning. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15301. Springer, Cham. https://doi.org/10.1007/978-3-031-78107-0_7en_US
dc.identifier.cristinIDFRIDAID 2358063
dc.identifier.doi10.1007/978-3-031-78107-0_7
dc.identifier.isbn9783031781063
dc.identifier.urihttps://hdl.handle.net/10037/36964
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofseriesLecture Notes in Computer Science (LNCS) ; nullen_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
dc.titleCustomizable and Programmable Deep Learningen_US
dc.type.versionacceptedVersionen_US
dc.typeConference objecten_US
dc.typeKonferansebidragen_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record