ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Saturation in Forcing Efficiency and Temperature Response of Large Volcanic Eruptions

Permanent lenke
https://hdl.handle.net/10037/37322
DOI
https://doi.org/10.1029/2024JD041098
Thumbnail
Åpne
article.pdf (1.193Mb)
Akseptert manusversjon (PDF)
Dato
2025-04-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Enger, Eirik Rolland; Grand Graversen, Rune; Theodorsen, Audun
Sammendrag
Volcanic eruptions cause climate cooling due to the reflection of solar radiation by emitted and subsequently produced aerosols. The climate effect of an eruption may last for about a decade and is nonlinearly tied to the amount of injected SO2 from the eruption. We investigate the climatic effects of volcanic eruptions, ranging from Mt. Pinatubo-sized events to supereruptions. The study is based on ensemble simulations in the Community Earth System Model Version 2 (CESM2) climate model applying the Whole Atmosphere Community Climate Model Version 6 (WACCM6) atmosphere model, using a coupled ocean and fixed sea surface temperature setting. Our analysis focuses on the impact of different levels of SO2 injections on stratospheric aerosol optical depth (SAOD), effective radiative forcing (ERF), and global mean surface temperature (GMST) anomalies. We uncover a notable time-dependent decrease in aerosol forcing efficiency (ERF normalized by SAOD) for all eruption SO2 levels during the first posteruption year. In addition, it is revealed that the largest eruptions investigated in this study, including several previous supereruption simulations, provide peak ERF anomalies bounded at -65 W m-2. Further, a close linear relationship between peak GMST and ERF effectively bounds the GMST anomaly to, at most, approximately -10 K. This is consistent across several previous studies using different climate models.
Forlag
Wiley
Sitering
Enger ER, Grand Graversen R, Theodorsen A. Saturation in Forcing Efficiency and Temperature Response of Large Volcanic Eruptions. Journal of Geophysical Research (JGR): Atmospheres. 2025;130(9)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1060]
Copyright 2025 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring