Vis enkel innførsel

dc.contributor.authorChoi, Changkyu
dc.contributor.authorSubramaniam, Arangan
dc.contributor.authorHandegard, Nils Olav
dc.contributor.authorRamezani-Kebrya, Ali
dc.contributor.authorJenssen, Robert
dc.date.accessioned2025-06-25T13:11:27Z
dc.date.available2025-06-25T13:11:27Z
dc.date.issued2025-06-17
dc.description.abstractThis position paper presents a framework for intelligent underwater exploration by marrying foundation models (FMs) with multi‑frequency echosounder data. Echosounder data capture backscattered acoustic signals across a range of frequencies, providing rich insights into underwater environments by exploiting the frequency‑dependent scattering properties of underwater targets. However, their heterogeneity and complex structure complicate analysis. To address these challenges, the paper introduces four key innovations aimed at improving echosounder data analysis under dynamic ocean conditions: (1) aligning multi‑frequency echosounder data with FMs via lightweight FM adapters, (2) enabling continual adaptation to temporal distribution shifts in dynamic marine environments, (3) designing semantic tokenizers that preserve spatial structures, and (4) effectively leveraging sparse annotations to minimize dependence on costly labeled data. For each research direction, we map recent artificial intelligence (AI) methodologies to marine acoustic challenges and outline concrete pathways for technology transfer. Preliminary experiments demonstrate that a Vision Transformer (ViT), pretrained on natural images in a self-supervised manner, can segment sandeel schools from multi‑frequency echosounder data without task‑specific retraining. These results substantiate the proposed framework and illustrate the potential of cross‑disciplinary AI methods for ecologically informative underwater exploration.en_US
dc.descriptionConference proceedings at <a href=https://ceur-ws.org/Vol-3975/>https://ceur-ws.org/Vol-3975/</a>.en_US
dc.identifier.citationChoi, Subramaniam, Handegard, Ramezani-Kebrya, Jenssen: Leveraging Foundation Model Adapters to Enable Robust and Semantic Underwater Exploration. In: Galimullin R, Touileb S. Proceedings of the 5th Symposium of the Norwegian AI Society (NAIS 2023), 2023. NAIS Norwegian Artificial Intelligence Societyen_US
dc.identifier.cristinIDFRIDAID 2387711
dc.identifier.issn1613-0073
dc.identifier.urihttps://hdl.handle.net/10037/37339
dc.language.isoengen_US
dc.publisherCEUR-WSen_US
dc.relation.projectIDNorges forskningsråd: 309439en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2025 The Author(s)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.titleLeveraging Foundation Model Adapters to Enable Robust and Semantic Underwater Explorationen_US
dc.type.versionpublishedVersionen_US
dc.typeChapteren_US
dc.typeBokkapittelen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution 4.0 International (CC BY 4.0)
Med mindre det står noe annet, er denne innførselens lisens beskrevet som Attribution 4.0 International (CC BY 4.0)