Relativistic four-component calculations of Buckingham birefringence using London atomic orbitals
Permanent link
https://hdl.handle.net/10037/4219DOI
doi: 10.1007/s00214-011-0939-3Date
2011Type
Journal articleTidsskriftartikkel
Peer reviewed
Abstract
We present the first relativistic study of the electric-field-gradient induced birefringence (Buckingham birefringence), with application to the series of molecules CX2 (X = O, S, Se, Te). A recently developed atomic-orbital-driven scheme for the calculation of time-dependent molecular properties using one-, two- and four-component relativistic wave functions (Bast et al. in Chem Phys 356:177, 2009) is extended to first-order frequency-dependent magnetic-field perturbations, using London atomic orbitals to ensure gauge-origin independent results and to improve basis-set convergence. Calculations are presented at the Hartree–Fock and Kohn–Sham levels of theory and results for CO2 and CS2 are compared with previous high-level coupled-cluster calculations. Except for the heaviest member of the series, relativistic effects are small—in particular for the temperature-independent contribution to the birefringence. By contrast, the effects of electron correlation are significant. However, the reliability of standard exchange-correlation functionals in describing Buckingham birefringence remains unclear based on the comparison with high-level coupled-cluster singles-and-doubles calculations.
Publisher
SpringerOpenCitation
Theoretical Chemistry accounts 129(2011) nr. 3-5 s. 685-699Metadata
Show full item recordCollections
The following license file are associated with this item: