• Machine learning derived input-function in a dynamic 18F-FDG PET study of mice 

      Kuttner, Samuel; Wickstrøm, Kristoffer Knutsen; Kalda, Gustav; Dorraji, Seyed Esmaeil; Martin-Armas, Montserrat; Oteiza, Ana; Jenssen, Robert; Fenton, Kristin Andreassen; Sundset, Rune; Axelsson, Jan (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-01-13)
      Tracer kinetic modelling, based on dynamic <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is used to quantify glucose metabolism in humans and animals. Knowledge of the arterial input-function (AIF) is required for such measurements. Our aim was to explore two non-invasive machine learning-based models, for AIF prediction in a small-animal dynamic FDG PET study. 7 tissue ...
    • Unsupervised supervoxel-based lung tumor segmentation across patient scans in hybrid PET/MRI 

      Hansen, Stine; Kuttner, Samuel; Kampffmeyer, Michael; Markussen, Tom-Vegard; Sundset, Rune; Øen, Silje Kjærnes; Eikenes, Live; Jenssen, Robert (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-11-29)
      Tumor segmentation is a crucial but difficult task in treatment planning and follow-up of cancerous patients. The challenge of automating the tumor segmentation has recently received a lot of attention, but the potential of utilizing hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI), a novel and promising imaging modality in oncology, is still under-explored. Recent ...