dc.contributor.author | Doulgeris, Anthony Paul | |
dc.contributor.author | Eltoft, Torbjørn | |
dc.date.accessioned | 2013-12-12T12:03:05Z | |
dc.date.available | 2013-12-12T12:03:05Z | |
dc.date.issued | 2013 | |
dc.description.abstract | This work extends upon our simple feature-based multichannel SAR segmentation method to incorporate highly desirable statistical properties into a computationally simple
approach. The desirable properties include Markov random field contextual smoothing and goodness-of-fit testing to automatically obtain the significant number of classes. To achieve this we need to find an explicit class model to fit these
non-Gaussian, non-symmetric or skewed feature space clusters.
We take the skewed scale mixture of Gaussian scheme to model our classes and approximate it by a number of constrained Gaussians, thereby retaining much of the speed and simplicity of the original feature space method. The algorithm
will be demonstrated on a real data and compared to an automatic Gaussian model. | en |
dc.identifier.citation | International Geoscience and Remote Sensing Symposium (IGARSS2013), | en |
dc.identifier.cristinID | FRIDAID 1043504 | |
dc.identifier.uri | https://hdl.handle.net/10037/5612 | |
dc.identifier.urn | URN:NBN:no-uit_munin_5303 | |
dc.language.iso | eng | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412 | en |
dc.title | An Advanced Non-Gaussian Feature Space Method for POL-SAR Image Segmentation | en |
dc.type | Conference object | en |
dc.type | Konferansebidrag | en |