ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scrape-off layer turbulence in TCV: Evidence in support of stochastic modelling.

Permanent link
https://hdl.handle.net/10037/10424
DOI
https://doi.org/10.1088/0741-3335/58/4/044006
Thumbnail
View/Open
article.pdf (1.582Mb)
(PDF)
Date
2016-01-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Theodorsen, Audun; Garcia, Odd Erik; Horacek, Jan; Kube, Ralph; Pitts, RA
Abstract
Intermittent fluctuations in the TCV scrape-off layer have been investigated by analysing long Langmuir probe data time series under stationary conditions, allowing calculation of fluctuation statistics with high accuracy. The ion saturation current signal is dominated by the frequent occurrence of large-amplitude bursts attributed to filament structures moving through the scrape-off layer. The average burst shape is well described by a double-exponential wave-form with constant duration, while the waiting times and peak amplitudes of the bursts both have an exponential distribution. Associated with bursts in the ion saturation current is a dipole-shaped floating potential structure and radially outwards directed electric drift velocity and particle flux, with average peak values increasing with the saturation current burst amplitude. The floating potential fluctuations have a normal probability density function while the distributions for the ion saturation current and estimated radial velocity have exponential tails for large fluctuations. These findings are discussed in the light of prevailing theories for filament motion and a stochastic model for intermittent scrape-off layer plasma fluctuations.
Description
Manuscript. Published version available in Plasma Physics and Controlled Fusion, vol. 58, no. 4
Publisher
IOP Publishing
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)