Vis enkel innførsel

dc.contributor.authorPolanco, Geanette
dc.contributor.authorVirk, Muhammad Shakeel
dc.contributor.authorMughal, Umair Najeeb
dc.contributor.authorVictor, Sojo
dc.contributor.authorJose, Da Paixao
dc.contributor.authorAntonio, Vidal
dc.contributor.authorOrlando, Aguillon
dc.date.accessioned2017-10-05T08:08:32Z
dc.date.available2017-10-05T08:08:32Z
dc.date.issued2015-10-22
dc.description.abstractWater hammer phenomenon involves the transformation of kinetic energy in pressure energy, this transformation occurs as the fluid conditions change inside the pipe in quite a short time. Industry requires to affront frequent flow interruptions in pipe systems due to the closing of valves or stopping of pumping equipment. This phenomenon can initiate serious damages like destruction of the pipe system involving leakage of the working fluid to the environment. If the system operates in a fragile environment, as in cold regions, concern about the consequences of leakage increases due to the variation of physical properties of fluid as well as the pipe material as a function of the temperature. Water hammer effects can be controlled focusing efforts on reducing the pressure increment that takes place once the phenomenon is presented. Some methods try to reduce the time of closure or the rate of change before the closure using special valves, others install additional elements to absorb the pressure surge and dissipate energy, others install relief valves to release the pressure, and others try to split the problem is smaller sections by installing check valves with dashpot or non-return valves. Splitting the pipeline into shorter sections is often used to help preventing the pipeline length of water falling back after a pump stops. In this paper the numerical results of maximum and minimum pressure values at both ends of a closed section are compared to experimental data. The numerical results follow the experimental trendsen_US
dc.descriptionSource at <a href=http://dx.doi.org/10.4236/wjet.2015.33C043> http://dx.doi.org/10.4236/wjet.2015.33C043 </a>en_US
dc.identifier.citationPolanco G, Virk MS, Mughal UN, Victor S, José DP, Antonio V, Orlando A. (2015) Encapsulated Water Hammer: Theoretical/Experimental Study. World Journal of Engineering and Technology,03,290-295. doi: 10.4236/wjet.2015.33C043en_US
dc.identifier.cristinIDFRIDAID 1319497
dc.identifier.doi10.4236/wjet.2015.33C043
dc.identifier.issn0975-4024
dc.identifier.issn2319-8613
dc.identifier.urihttps://hdl.handle.net/10037/11626
dc.language.isoengen_US
dc.publisherScientific Research Publishingen_US
dc.relation.journalInternational Journal of Engineering and Technology (Chennai)
dc.relation.projectIDSiU, Senter for internasjonalisering av utdanning: HNP-2014/10023en_US
dc.relation.projectIDNorges forskningsråd: 195153en_US
dc.relation.projectIDInterreg: Wind CoE - Interreg IVA Botnia-Atlanticaen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/NORDSATS/195153/Norway/ColdTech//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Teknologi: 500::Materialteknologi: 520en_US
dc.subjectVDP::Technology: 500::Materials science and engineering: 520en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430en_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430en_US
dc.titleEncapsulated Water Hammer: Theoretical/Experimental Studyen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel