ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chip Based Nanoscopy: Towards Integration and High-throughput Imaging

Permanent lenke
https://hdl.handle.net/10037/11997
DOI
https://doi.org/10.1117/12.2273902
Thumbnail
Åpne
article.pdf (610.9Kb)
publisher's pdf (PDF)
Dato
2017
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Ahluwalia, Balpreet Singh; Coucheron, David Andre; Helle, Øystein Ivar; Øie, Cristina Ionica; Dullo, Firehun Tsige
Sammendrag
Super-resolution optical microscopy, commonly referred to as optical nanoscopy, has enabled imaging of biological samples with a resolution that was only achievable previously using electron microscopy. Optical nanoscopy is a rapidly growing field, with several different techniques and implementations that overcome the diffraction limit of light. However, the common nanoscope continues to be a rather complex, expensive and bulky instrument. Direct stochastic optical reconstruction microscopy (dSTORM) imaging was recently demonstrated using a waveguide platform for excitation in combination with a simple microscope for imaging. High refractive index waveguide materials have a high intensity evanescent field stretching around 100-200 nm outside the guiding material, which is ideally suited for total internal reflection fluorescence (TIRF) excitation over large areas. We demonstrate dSTORM imaging of the plasma membrane of liver sinusoidal endothelial cells (LSECs) and trophoblasts (HTR-8 cells) using waveguide excitation, with resolution down to around 70 nm. Additionally, we present TIRF imaging of LSEC micro-tubules over a 500 μm x 500 μm area, laying the foundation for large field of view (f-o-v) nanoscopy.
Er en del av
Coucheron, D.A. (2021). Waveguide-based Excitation for High-throughput Imaging. (Doctoral thesis). https://hdl.handle.net/10037/20695
Forlag
SPIE
Sitering
Ahluwalia BS, Coucheron DA, Helle ØI, Øie CI, Dullo FT. Chip Based Nanoscopy: Towards Integration and High-throughput Imaging. Proceedings of SPIE, the International Society for Optical Engineering. 2017;10350
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring