Vis enkel innførsel

dc.contributor.authorChen, Nai-Chen
dc.contributor.authorYang, Tsanyao Frank
dc.contributor.authorHong, Wei-Li
dc.contributor.authorChen, Hsuan-Wen
dc.contributor.authorChen, Hsiao-Chi
dc.contributor.authorHu, Ching-Yi
dc.contributor.authorHuang, Yu-Chun
dc.contributor.authorLin, Saulwood
dc.contributor.authorLin, Li-Hung
dc.contributor.authorSu, Chih-Chieh
dc.contributor.authorLiao, Wei-Zhi
dc.contributor.authorSun, Chih-Hsien
dc.contributor.authorWang, Pei-Ling
dc.contributor.authorYang, Tao
dc.contributor.authorJiang, Shao-Yong
dc.contributor.authorLiu, Char-Shine
dc.contributor.authorWang, Yunshuen
dc.contributor.authorChung, San-Hsiung
dc.date.accessioned2018-03-26T06:18:40Z
dc.date.available2018-03-26T06:18:40Z
dc.date.issued2017-07-15
dc.description.abstractTo systematically quantify the production, consumption, and migration of methane, 210 sediment cores were collected from offshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data, combined with published results, were used to calculate the diffusive methane fluxes across different geochemical transitions and to develop scenarios of mass balance and constrain deep microbial and thermogenic methane production rates within the accretionary prism. The results showed that methane diffusive fluxes ranged from 2.71 × 10<sup>−3</sup> to 2.78 × 10<sup>−1</sup> and from –1.88 × 10<sup>−1</sup> to 3.97 mmol m<sup>−2</sup> d<sup>−1</sup> at the sulfate‐methane‐transition‐zone (SMTZ) and sediment‐seawater interfaces, respectively. High methane fluxes tend to be associated with structural features, suggesting a strong structural control on the methane transport. A significant portion of ascending methane (>50%) is consumed by anaerobic oxidation of methane at the SMTZ at most sites, indicating effective biological filtration. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater. The flux imbalance arose primarily due to the larger production of methane through deep microbial and thermogenic processes at a magnitude of 1512–43,096 Tg Myr<sup>−1</sup> and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.en_US
dc.descriptionSource at <a href=https://doi.org/10.1002/2017GC006798> https://doi.org/10.1002/2017GC006798 </a>en_US
dc.identifier.citationChen N. -C., Yang, T. F., Hong, W. -L., Chen, H. -W., Chen, H. -C., Hu, C. -Y. ... Chung, S. (2017). Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan. Geochemistry Geophysics Geosystems. 18(8):2970-2989en_US
dc.identifier.cristinIDFRIDAID 1500528
dc.identifier.doi10.1002/2017GC006798
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/10037/12435
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.journalGeochemistry Geophysics Geosystems
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/NORWAY/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectTaiwanen_US
dc.subjectsubductionen_US
dc.subjectmethane effluxen_US
dc.subjectanaerobic methanotrophyen_US
dc.subjectmethanogenesisen_US
dc.subjectthermal maturationen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Mineralogi, petrologi, geokjemi: 462en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450::Mineralogy, petrology, geochemistry: 462en_US
dc.titleProduction, consumption, and migration of methane in accretionary prism of southwestern Taiwanen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel