Show simple item record

dc.contributor.authorAuriac, Amandine
dc.contributor.authorWhitehouse, P.L.
dc.contributor.authorBentley, M.J.
dc.contributor.authorPatton, Henry
dc.contributor.authorLloyd, J.M.
dc.contributor.authorHubbard, Alun Lloyd
dc.date.accessioned2018-06-15T11:10:48Z
dc.date.available2018-06-15T11:10:48Z
dc.date.issued2016-09-01
dc.description.abstractThe 3D geometrical evolution of the Barents Sea Ice Sheet (BSIS), particularly during its late-glacial retreat phase, remains largely ambiguous due to the paucity of direct marine- and terrestrial-based evidence constraining its horizontal and vertical extent and chronology. One way of validating the numerous BSIS reconstructions previously proposed is to collate and apply them under a wide range of Earth models and to compare prognostic (isostatic) output through time with known relative sea-level (RSL) data. Here we compare six contrasting BSIS load scenarios via a spherical Earth system model and derive a best-fit, χ2 parameter using RSL data from the four main terrestrial regions within the domain: Svalbard, Franz Josef Land, Novaya Zemlya and northern Norway. Poor χ2 values allow two load scenarios to be dismissed, leaving four that agree well with RSL observations. The remaining four scenarios optimally fit the RSL data when combined with Earth models that have an upper mantle viscosity of 0.2–2 × 1021 Pa s, while there is less sensitivity to the lithosphere thickness (ranging from 71 to 120 km) and lower mantle viscosity (spanning 1–50 × 1021 Pa s). GPS observations are also compared with predictions of present-day uplift across the Barents Sea. Key locations where relative sea-level and GPS data would prove critical in constraining future ice-sheet modelling efforts are also identified.en_US
dc.descriptionAccepted manuscript version. Published version available in <a href=http://doi.org/10.1016/j.quascirev.2016.02.011> Quaternary Science Reviews (2016) 147, p.122-135.</a>en_US
dc.identifier.cristinIDFRIDAID 1348282
dc.identifier.doi10.1016/j.quascirev.2016.02.011
dc.identifier.issn0277-3791
dc.identifier.issn1873-457X
dc.identifier.urihttps://hdl.handle.net/10037/12882
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalQuaternary Science Reviews
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7-PEOPLE/317217/EU/Glaciated North Atlantic Margins/GLANAM/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/PETROMAKS2/200672/Norway/Glaciations in the Barents Sea area//en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectGlacial isostatic adjustment modellingen_US
dc.subjectIce sheeten_US
dc.subjectBarents Seaen_US
dc.subjectRelative sea levelen_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.titleGlacial isostatic adjustment associated with the Barents Sea ice sheet: A modelling inter-comparisonen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record