ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Poleward energy transport: is the standard definition physically relevant at all time scales?

Permanent link
https://hdl.handle.net/10037/13302
DOI
https://doi.org/10.1007/s00382-017-3722-x
Thumbnail
View/Open
article.pdf (18.09Mb)
Publisher's version (PDF)
Date
2017-05-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi
Abstract
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by “eddies” and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 1015 W = 1 PW) in the poleward heat transport. These fluctuations are referred to as “extensive”, for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability ​on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.
Description
This is a post-peer-review, pre-copyedit version of an article published in Climate Dynamics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00382-017-3722-x.
Publisher
Springer Verlag (Germany)
Citation
Liang, M., Czaja, A., Graversen, R. & Tailleux, R. (2017). Poleward energy transport: is the standard definition physically relevant at all time scales?. Climate Dynamics, 50, 1785-1797. https://doi.org/10.1007/s00382-017-3722-x
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)