ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven detrending of nonstationary fractal time series with echo state networks

Permanent link
https://hdl.handle.net/10037/13713
DOI
https://doi.org/10.1016/j.ins.2016.12.015
Thumbnail
View/Open
article.pdf (1.506Mb)
Submitted manuscript version (PDF)
Date
2016-12-14
Type
Journal article
Tidsskriftartikkel

Author
Maiorino, Enrico; Bianchi, Filippo Maria; Livi, Lorenzo; Rizzi, Antonello; Sadeghian, Alireza
Abstract
In this paper, we propose a novel data-driven approach for removing trends (detrending) from nonstationary, fractal and multifractal time series. We consider real-valued time series relative to measurements of an underlying dynamical system that evolves through time. We assume that such a dynamical process is predictable to a certain degree by means of a class of recurrent networks called Echo State Network (ESN), which are capable to model a generic dynamical process. In order to isolate the superimposed (multi)fractal component of interest, we define a data-driven filter by leveraging on the ESN prediction capability to identify the trend component of a given input time series. Specifically, the (estimated) trend is removed from the original time series and the residual signal is analyzed with the multifractal detrended fluctuation analysis procedure to verify the correctness of the detrending procedure. In order to demonstrate the effectiveness of the proposed technique, we consider several synthetic time series consisting of different types of trends and fractal noise components with known characteristics. We also process a real-world dataset, the sunspot time series, which is well-known for its multifractal features and has recently gained attention in the complex systems field. Results demonstrate the validity and generality of the proposed detrending method based on ESNs.
Description
Submitted manuscript version. Published version available at: https://doi.org/10.1016/j.ins.2016.12.015 .
Publisher
Elsevier
Citation
Maiorino, E., Bianchi, F. M., Livi, L., Rizzi, A. & Sadeghian, A. (2016). Data-driven detrending of nonstationary fractal time series with echo state networks. Information Sciences. 2017;382-383:359-373.
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1062]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)