ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep kernelized autoencoders

Permanent link
https://hdl.handle.net/10037/13824
DOI
https://doi.org/10.1007/978-3-319-59126-1_35
Thumbnail
View/Open
article.pdf (4.539Mb)
(PDF)
Date
2017-05-19
Type
Peer reviewed
Book
Bokkapittel
Bok
Chapter

Author
Kampffmeyer, Michael C.; Løkse, Sigurd; Bianchi, Filippo Maria; Jenssen, Robert; Livi, Lorenzo
Abstract
In this paper we introduce the deep kernelized autoencoder, a neural network model that allows an explicit approximation of (i) the mapping from an input space to an arbitrary, user-specified kernel space and (ii) the back-projection from such a kernel space to input space. The proposed method is based on traditional autoencoders and is trained through a new unsupervised loss function. During training, we optimize both the reconstruction accuracy of input samples and the alignment between a kernel matrix given as prior and the inner products of the hidden representations computed by the autoencoder. Kernel alignment provides control over the hidden representation learned by the autoen- coder. Experiments have been performed to evaluate both reconstruction and kernel alignment performance. Additionally, we applied our method to emulate kPCA on a denoising task obtaining promising results
Description
Accepted manuscript version allowed (see policy).
Published version available in:https://link.springer.com/chapter/10.1007/978-3-319-59126-1_35
Publisher
Springer International Publishing
Citation
Kampffmeyer MC, Løkse S, Bianchi FM, Jenssen R, Livi L. Deep kernelized autoencoders. Lecture Notes in Computer Science. 2017;10269 LNCS:419-430 DOI:10.1007/978-3-319-59126-1_35
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1062]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)