ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

An efficient pseudo-spectral method for the description of atomic electronic wave functions – Application to the hydrogen atom in a uniform magnetic field

Permanent lenke
https://hdl.handle.net/10037/14369
DOI
https://doi.org/10.1016/j.chemphys.2018.09.025
Thumbnail
Åpne
article.pdf (320.3Kb)
Accepted manuscript version (PDF)
Dato
2018-09-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Woywod, Clemens; Roy, Susmita; Maiti, Kiran; Ruud, Kenneth
Sammendrag

The mapping of an electronic state on a real-space support lattice may offer advantages over a basis set ansatz in cases where there are linear dependences due to basis set overcompleteness or when strong internal or external fields are present. Such discretization methods are also of interest because they allow for the convenient numerical integration of matrix elements of local operators. We have developed a pseudo-spectral approach to the numerical solution of the time-dependent and time-independent Schrödinger equations describing electronic motion in atoms and atomic ions in terms of a spherical coordinate system. A key feature of this scheme is the construction of a Variational Basis Representation (VBR) for the non-local component and of a Generalized Finite Basis Representation (GFBR) for the local component of the electronic Hamiltonian operator. Radial Hamiltonian eigenfunctions χnl;β(r) of the H atom-like system and spherical harmonics form the basis set. Two special cases of this approach are explored: In one case, the functions of the field-free H atom are used as the elements of the basis set, and in the second case, each radial basis function has been obtained by variationally optimizing a shielding parameter β to yield a minimum energy for a particular eigenstate of the H atom in a uniform magnetic field.

We derive a new quadrature rule of nearly Gaussian accuracy for the computation of matrix elements of local operators between radial basis functions and perform numerical evaluation of local operator matrix elements involving spherical harmonics. With this combination of radial and angular quadrature prescriptions we ensure to a good approximation the discrete orthogonality of Hamiltonian eigenfunctions of H atom-like systems for summation over the grid points. We further show that sets of χnl;β(r) functions are linearly independent, whereas sets of the polar-angle-dependent components of the spherical harmonics, i.e., the associated Legendre functions, are not and provide a physical interpretation of this mathematical observation.

The pseudo-spectral approach presented here is applied to two model systems: the field-free H atom and the H atom in a uniform magnetic field. The results demonstrate the potential of this method for the description of challenging systems such as highly charged atomic ions.

Beskrivelse
Accepted manuscript version. Published version available at https://doi.org/10.1016/j.chemphys.2018.09.025. Licensed CC BY-NC-ND 4.0.
Forlag
Elsevier
Sitering
Woywod, C., Roy, S., Maiti, K. & Ruud, K. (2018). An efficient pseudo-spectral method for the description of atomic electronic wave functions – Application to the hydrogen atom in a uniform magnetic field. Chemical Physics, 515, 299-314. https://doi.org/10.1016/j.chemphys.2018.09.025
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (kjemi) [566]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring