Vis enkel innførsel

dc.contributor.authorBrough, Stephen
dc.contributor.authorHubbard, Bryn
dc.contributor.authorHubbard, Alun Lloyd
dc.date.accessioned2019-01-15T14:22:10Z
dc.date.available2019-01-15T14:22:10Z
dc.date.issued2018-12-04
dc.description.abstractAlthough a substantial ice cover has been identified within the mid-latitudes of Mars, there is uncertainty regarding the formation, current and former volume, and dynamic evolution of these ice masses. Here, we present the first comprehensive ice volume estimate of martian glacier-like forms (GLFs) from systematic population scale mapping and volumetric analysis. The outlines of 1243 GLFs were manually delineated from 6 m per pixel Context Camera (CTX) images and the volume of each determined using a volume–area scaling approach. Our results show that GLFs cover a surface area of 11344 ± 393 km<sup>2</sup> and have a total volume of 1744 ± 441 km<sup>3</sup>. Using two end-member scenarios for ice concentration by volume of 30% (pore ice) and 90% (debris-covered glacier ice), we calculate the volume of ice contained within GLFs to be between 523 ± 132 km<sup>3</sup> (480 ± 121 Gt) and 1570 ± 397 km<sup>3</sup> (1439 ± 364 Gt), equivalent to a mean global water layer 3 to 10 mm thick. We investigate the local topographic setting of each GLF by reference to the Mars Orbiter Laser Altimeter (MOLA) digital elevation model. Our analysis reveals that globally GLFs are on average larger in latitudes >36° and on slopes between 2 and 8°. In the northern hemisphere GLFs between 500 and 2500 m in elevation and in the southern hemisphere GLFs with a northern aspect are also larger on average. The observed spatial patterns of GLF landform and volume distribution suggests that regional to local meteorological and topographical conditions play an important role in GLF ice accumulation and/or preservation. Assuming a net accumulation rate of 10 mm a<sup>−1</sup> typical of climatic excursions with high obliquity, we estimate a period of at least 13 ka is required to yield the average calculated GLF ice thickness of ∼130 m. Such a period is well within the timeframe of a high obliquity cycle (20–40 ka), suggesting that the current GLF volume could have formed during a single climate excursion.en_US
dc.descriptionAccepted manuscript version, licensed <a href=http://creativecommons.org/licenses/by-nc-nd/4.0/> CC BY-NC-ND 4.0.</a> Published version available at <a href=https://doi.org/10.1016/j.epsl.2018.11.031> https://doi.org/10.1016/j.epsl.2018.11.031</a>.en_US
dc.identifier.citationBrough, S., Hubbard, B. & Hubbard, A.L. (2019). Area and volume of mid-latitude glacier-like forms on Mars. <i>Earth and Planetary Science Letters</i>, 507, 10-20. https://doi.org/10.1016/j.epsl.2018.11.031Geten_US
dc.identifier.cristinIDFRIDAID 1651525
dc.identifier.doi10.1016/j.epsl.2018.11.031
dc.identifier.issn0012-821X
dc.identifier.issn1385-013X
dc.identifier.urihttps://hdl.handle.net/10037/14451
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.journalEarth and Planetary Science Letters
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.rights.accessRightsopenAccessen_US
dc.subjectVDP::Mathematics and natural science: 400::Physics: 430::Astrophysics, astronomy: 438en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk, astronomi: 438en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450::Quaternary geology, glaciology: 465en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Kvartærgeologi, glasiologi: 465en_US
dc.subjectMarsen_US
dc.subjectglaciationen_US
dc.subjectglacieren_US
dc.subjectwateren_US
dc.subjectclimate changeen_US
dc.subjectGISen_US
dc.titleArea and volume of mid-latitude glacier-like forms on Marsen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel