ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning and hand-crafted feature based approaches for polyp detection in medical videos

Permanent lenke
https://hdl.handle.net/10037/14626
DOI
https://doi.org/10.1109/CBMS.2018.00073
Thumbnail
Åpne
article.pdf (1.583Mb)
Accepted manuscript version (PDF)
Dato
2018-07-23
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Pogorelov, Konstantin; Ostroukhova, Olga; Jeppsson, Mattis; Espeland, Håvard; Griwodz, Carsten; de Lange, Thomas; Riegler, Michael; Halvorsen, Pål
Sammendrag
Video analysis including classification, segmentation or tagging is one of the most challenging but also interesting topics multimedia research currently try to tackle. This is often related to videos from surveillance cameras or social media. In the last years, also medical institutions produce more and more video and image content. Some areas of medical image analysis, like radiology or brain scans, are well covered, but there is a much broader potential of medical multimedia content analysis. For example, in colonoscopy, 20% of polyps are missed or incompletely removed on average. Thus, automatic detection to support medical experts can be useful. In this paper, we present and evaluate several machine learning-based approaches for real-time polyp detection for live colonoscopy. We propose pixel-wise localization and frame-wise detection methods which include both handcrafted and deep learning based approaches. The experimental results demonstrate the capability of analyzing multimedia content in real clinical settings, the possible improvements in the work flow and the potential improved detection rates for medical experts.
Beskrivelse
Source at https://doi.org/10.1109/CBMS.2018.00073
Forlag
IEEE
Sitering
Pogorelov, K., Ostroukhova, O., Jeppsson, M., Espeland, H., Griwodz, C., de Lange, T., ... Halvorsen, P. (2018). Deep learning and hand-crafted feature based approaches for polyp detection in medical videos. IEEE International Symposium on Computer-Based Medical Systems, 2018, 381-386. https://doi.org/10.1109/CBMS.2018.00073
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (informatikk) [477]

Relaterte innførsler

Viser innførsler relatert til tittel, forfatter og emneord.

  • Miniatyrbilde

    Influence of environmental tonicity changes on lipophilic drug release from liposomes 

    Nikolaisen, Trygg Einar (Mastergradsoppgave; Master thesis, 2018-05-15)
    Introduction: Liposomes as drug delivery systems has been widely studied as a way to solubilize poorly soluble drugs, reduce side effects of chemotherapeutics and increase circulation time in vivo. Since the first descriptions of liposomes over 60 years ago, they have shown tendencies to shrink and swell when the external environment of the liposomes is altered. This phenomenon has been studied in ...
  • Miniatyrbilde

    Prognostic Impacts of Angiopoietins in NSCLC Tumor Cells and Stroma : VEGF-A Impact Is Strongly Associated with Ang-2 

    Andersen, Sigve; Dønnem, Tom; Al-Shibli, Khalid Ibrahim; Al-Saad, Samer; Stenvold, Helge; Busund, Lill-Tove; Bremnes, Roy M. (Journal article; Tidsskriftartikkel; Peer reviewed, 2011)
    Angiopoietins and their receptor Tie-2 are, in concert with VEGF-A, key mediators in angiogenesis. This study evaluates the prognostic impact of all known human angiopoietins (Ang-1, Ang-2 and Ang-4) and their receptor Tie-2, as well as their relation to the prognostic expression of VEGF-A. 335 unselected stage I-IIIA NSCLC-patients were included and tissue samples of respective tumor cells and ...
  • Miniatyrbilde

    14th International Symposium on Cells of the Hepatic Sinusoid 

    Smedsrød, Bård (Book; Bok, 2008-08-31)
    Abstract book of the symposium

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring