ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly Detection for Environmental Data Using Machine Learning Regression

Permanent link
https://hdl.handle.net/10037/14849
DOI
https://doi.org/10.1088/1757-899X/472/1/012089
Thumbnail
View/Open
article.pdf (391.9Kb)
published version (PDF)
Date
2018
Type
Journal article
Peer reviewed

Author
Yuan, Fuqing; Lu, Jinmei
Abstract
Environmental data exhibits as huge amount and complex dependency. Utilizing these data to detect anomaly is beneficial to the disaster prevention. Big data approach using the machine learning method has the advantage not requiring the geophysical and geochemical knowledge to detect anomaly. This paper using the popular support vector regression (SVR ) to model the correlation between factors. From the residual of the regression, it develops a statistical method to quantify the extremity of some abnormal observed data. A case study is proposed to demonstrate the developed methods.
Description
Published version, licensed under the terms of the Creative Commons Attribution 3.0 . Source at https://doi.org/10.1088/1757-899X/472/1/012089
Publisher
IOP Publishing
Citation
Yuan F, Lu J. (2018) Anomaly Detection for Environmental Data Using Machine Learning Regression. IOP Conference Series: Materials Science and Engineering 472 (1), 5 s. https://doi.org/10.1088/1757-899X/472/1/012089
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)